Cách tìm m để hai phương trình có nghiệm chung lớp 9 (cực hay)
Bài viết Cách tìm m để hai phương trình có nghiệm chung lớp 9 với phương pháp giải chi tiết giúp học sinh ôn tập, biết cách làm bài tập Cách tìm m để hai phương trình có nghiệm chung.
Cách tìm m để hai phương trình có nghiệm chung lớp 9 (cực hay)
A. Phương pháp giải
- Bài toán: Cho 2 phương trình dạng ax2 + bx + c = 0 có chứa tham số m. Tìm m để 2 phương trình có ít nhất một nghiệm chung
- Cách giải:
+ B1: Tìm điều kiện của m để 2 phương trình cùng có nghiệm
+ B2: Giả sử x0 là nghiệm chung của 2 phương trình. Tìm x0
+ B3: Thế x0 tìm được vào một trong hai phương trình tìm m
+ B4: Đối chiếu m tìm được với điều kiện ở B1, nếu thỏa mãn thì nhận, không thỏa mãn thì loại
Ví dụ 1: Cho 2 phương trình : x2 + mx + 2 = 0(1) và x2 + 2x + m = 0(2). Tìm m để hai phương trình có ít nhất một nghiệm chung
Giải
Phương trình (1) có nghiệm khi: Δ ≥ 0
Phương trình (2 ) có nghiệm khi: Δ' ≥ 0 ⇔ 1 - m ≥ 0 ⇔ m ≤ 1
⇒ Điều kiện để 2 phương trình cùng có nghiệm là m ≤ -2√2 (*)
Giả sử x0 là nghiệm chung của 2 phương trình, ta có:
Trừ 2 phương trình cho nhau ta được: mx0 - 2x0 + 2 - m = 0 ⇔ (m - 2)x0 = m - 2
Do m ≤ -2√2 nên m – 2 ≠ 0, suy ra x0 = 1
Thay x0 = 1 vào phương trình (1): 1 + m + 2 = 0 hay m = -3( thỏa mãn (*))
Vậy với m = -3 thì 2 phương trình có ít nhất một nghiệm chung
Ví dụ 2: Cho 2 phương trình : x2 - 2mx + 4m = 0(1) và x2 - mx + 10m = 0(2) . Tìm m để phương trình (2) có một nghiệm gấp 2 lần một nghiệm của phương trình (1)
Giải
Phương trình (1) có nghiệm khi: Δ' ≥ 0
Phương trình (2 ) có nghiệm khi: Δ ≥ 0
⇔ m2 - 40m ≥ 0 ⇔ m(m - 40) ≥ 0
⇒ Điều kiện để 2 phương trình cùng có nghiệm là m ≥ 40 ∨ m ≤ 0 (*)
Giả sử x0 là nghiệm của phương trình (2) thì 2x0 là nghiệm của phương trình (1). Thay x0 vào (2) và 2x0 vào (1) ta có:
Trừ 2 phương trình cho nhau ta được: 9m = 0 ⇔ m = 0 (thỏa mãn (*))
Vậy với m = 0 thì phương trình (2) có một nghiệm gấp 2 lần một nghiệm của phương trình (1)
Ví dụ 3: Cho 2 phương trình : x2 + x + a = 0(1) và x2 + ax + 1 = 0(2).
a. Tìm a để 2 phương trình có ít nhất một nghiệm chung
b. Tìm a để 2 phương trình tương đương
Giải
a. Phương trình (1) có nghiệm khi: Δ ≥ 0 ⇔ 1 – 4a ≥ 0 ⇔ a ≤ 1/4
Phương trình (2 ) có nghiệm khi: Δ ≥ 0
Điều kiện để 2 phương trình cùng có nghiệm là: a ≤ -2 (*)
Giả sử x0 là nghiệm chung của 2 phương trình (2) ta có:
Trừ 2 phương trình cho nhau ta được: x0(1 – a) – (1 – a) = 0
⇔ x0(1 – a) = (1 – a) (**)
Vì a ≤ -2 nên 1 – a luôn khác 0. Chia hai vế của (**) cho 1 – a ta được x0 = 1
Thay x0 = 1 vào (1) ta có: a = -2 ( thỏa mãn (*))
Vậy với a = -2 thì 2 phương trình có ít nhất một nghiệm chung
b. Kí hiệu ∆1, S1, P1 lần lượt là biệt thức đen-ta, tổng 2 nghiệm, tích 2 nghiệm của phương trình (1)
Kí hiệu ∆2, S2, P2 lần lượt là biệt thức đen-ta, tổng 2 nghiệm, tích 2 nghiệm l của phương trình (2)
Hai phương trình tương đương khi chúng có cùng tập nghiệm . Ta xét các trường hợp sau:
+ TH1: Hai phương trình cùng có tập nghiệm là rỗng
Trường hợp này xảy ra khi:
+ TH2: Hai phương trình có nghiệm kép giống nhau
Trường hợp này xảy ra khi vô nghiệm
+ TH3: Hai phương trình có nghiệm phân biệt giống nhau
Trường hợp này xảy ra khi
⇒ vô nghiệm
Vậy với thì 2 phương trình đã cho tương đương
B. Bài tập
Câu 1: Số giá trị của m để hai phương trình x2 – 2mx – 4m + 1 = 0 (1) và x2 + (3m + 1)x + 2m + 1 = 0 (2) có nghiệm chung là
A. 0
B. 1
C. 2
D. 3
Giải
Phương trình (1) có nghiệm khi Δ' ≥ 0 ⇔ m2 + 4m - 1 ≥ 0
Phương trình (2 ) có nghiệm khi Δ ≥ 0 ⇔ (3m + 1)2 - 4(2m + 1) ≥ 0 ⇔ 9m2 - 2m - 3 ≥ 0
Điều kiện để hai phương trình có nghiệm là:
Giả sử x0 là nghiệm chung của 2 phương trình, ta có:
Trừ 2 phương trình cho nhau ta được: -2mx0 - (3m + 1)x0 - 4m + 1 - 2m - 1 = 0 ⇔ -(5m + 1)x0 - 6m = 0
Nếu thì điều kiện (*) trở thành
⇒ không thỏa mãn (*), nghĩa là với thì hai phương trình đều vô nghiệm. Vậy muốn hai phương trình có nghiệm chung thì
Khi thì
Thay vào phương trình (1):
Xét –m + 1 = 0 ⇔ m = 1( thỏa mãn (*)) ⇒ nhận
Xét 40m2 + 7m + 1 = 0 có ∆ = 72 -4.40.1 = -111 < 0 nên vô nghiệm
Vậy với m = 1 thì 2 phương trình có nghiệm chung
Đáp án B
Câu 2: Số giá trị của m để hai phương trình 2x2 – (3m + 2)x + 12 = 0 (1) và 4x2 - (9m - 2)x + 36 = 0 (2) có nghiệm chung là
A. 0
B. 1
C. 2
D. 3
Giải
Phương trình (1) có nghiệm khi: Δ ≥ 0 ⇔ (3m + 2)2 - 4.2.12 ≥ 0 ⇔ 9m2 + 12m - 92 ≥ 0
Phương trình (2) có nghiệm khi: Δ ≥ 0 ⇔ (9m - 2)2 - 4.4.36 ≥ 0 ⇔ 81m2 - 36m + 4 - 576 ≥ 0 ⇔ 81m2 - 36m - 572 ≥ 0
Điều kiện để hai phương trình có nghiệm là:
Giả sử x0 là nghiệm chung của 2 phương trình, ta có:
Trừ 2 phương trình cho nhau ta được: -(6m + 4)x0 + (9m - 2)x0 - 12 = 0 ⇔ (3m - 6)x0 - 12 = 0
Nếu m = 2 thì điều kiện (*) trở thành:
⇒ m = 2 không thỏa mãn (*), nghĩa là với m = 2 thì 2 phương trình cùng vô nghiệm
Vậy muốn hai phương trình có nghiệm chung thì m ≠ 2
Khi m ≠ 2 thì
Thay vào phương trình (1):
Xét m = 3( thỏa mãn (*)) ⇒ nhận
Vậy với m = 3 thì 2 phương trình có nghiệm chung
Đáp án B
Câu 3: Tổng các giá trị của m để hai phương trình 2x2 + (3m + 1)x - 9 = 0 (1) và 6x2 + (7m - 1)x - 19 = 0 (2) có nghiệm chung là
Giải
Phương trình (1) có nghiệm khi: Δ ≥ 0 ⇔ (3m + 1)2 - 4.2.(-9) ≥ 0 ⇔ (3m + 1)2 + 72 ≥ 0,(∀ m ∈ R)
Phương trình (2) có nghiệm khi: Δ ≥ 0 ⇔ (7m - 1)2 - 4.6.(-19) ≥ 0 ⇔ (7m-1)2 + 456 ≥ 0,(∀ m ∈ R)
⇒ Với mọi m hai phương trình luôn có nghiệm
Giả sử x0 là nghiệm chung của 2 phương trình, ta có:
Trừ 2 phương trình cho nhau ta được: (9m + 3)x0-(7m-1)x0-27+19=0 ⇔ (2m + 4)x0-8=0(*)
Nếu m = -2 thì phương trình (*) vô nghiệm
Nghĩa là với m = -2 thì 2 phương trình cùng không có nghiệm chung
Vậy muốn hai phương trình có nghiệm chung thì m ≠ -2
Khi m ≠ -2 thì
Thay vào phương trình (1):
Vậy với m = 2, thì 2 phương trình có nghiệm chung
Đáp án D
Câu 4: Tích các giá trị của m để hai phương trình 2x2 + mx - 1 = 0 (1) và mx2 - x + 2 = 0 (2) có nghiệm chung là
A. -1
B. 5
C. 8
D. -10
Giải
+) TH1: m = 0 thì phương trình (1): 2x2 - 1 = 0
Phương trình (2): -x + 2 = 0 ⇔ x = 2
⇒ với m = 0 thì hai phương trình không có nghiệm chung
+) TH2: m ≠ 0 thì hai phương trình đều là phương trình bậc hai. Khi đó
Phương trình (1) có nghiệm khi Δ ≥ 0 m2 + 8 ≥ 0,(∀ m ∈ R)
Phương trình (2 ) có nghiệm khi Δ ≥ 0 ⇔ 1 - 8m ≥ 0 ⇔ m ≤ 1/8
⇒ Với hai phương trình luôn có nghiệm
Giả sử x0 là nghiệm chung của 2 phương trình, ta có:
Vì m ≠ 0 nên ta nhân 2 vế của phương trình thứ nhất với m, nhân 2 vế của phương trình thứ hai với 2 ta được:
Trừ 2 phương trình cho nhau ta được:
Thay vào phương trình (1):
Xét phương trình m2 – m + 7 = 0 có ∆ = (-1)2 – 4.1.7 = -27 < 0 nên vô nghiệm
Vậy với m = -1 thì 2 phương trình có nghiệm chung
Đáp án A
Câu 5: Cho hai phương trình x2 – (m + 4)x + m + 5 = 0 (1) và x2 – (m + 2)x + m + 1 = 0 (2), khẳng định nào sau đây là đúng
A. Có một giá trị của m để hai phương trình có nghiệm chung
B. Tích các giá trị của m để hai phương trình có nghiệm chung bằng 10
C. Giá trị của m để hai phương trình có nghiệm chung là số lớn hơn 3
D. Không có giá trị của m để hai phương trình có nghiệm chung
Giải
Phương trình (1) có nghiệm khi: Δ ≥ 0 ⇔ (m + 4)2 - 4(m + 5) ≥ 0
⇔ m2 + 8m + 16 - 4m - 20 ≥ 0 ⇔ m2 + 4m - 4 ≥ 0
Phương trình (2 ) có nghiệm khi: Δ ≥ 0 ⇔ (m + 2)2 - 4(m + 1) ≥ 0
⇔ m2 + 4m + 4-4m - 4 ≥ 0 ⇔ m2 ≥ 0,(∀ m ∈ R)
⇒ Điều kiện để hai phương trình luôn có nghiệm là: m2 + 4m – 4 ≥ 0(*)
Giả sử x0 là nghiệm chung của 2 phương trình, ta có:
Trừ 2 phương trình cho nhau ta được: -(m + 4)x0 + (m + 2)x0 + 4 = 0 ⇔ -2x0 + 4 = 0 ⇔ x0 = 2
Thay vào phương trình (1):
Với m = 1 thì m2 + 4m – 4 = 1 + 4 – 4 = 1 > 0 thỏa mãn điều kiện (*)nên nhận
Vậy với m = 1 thì 2 phương trình có nghiệm chung
Đáp án A
C. Bài tập tự luyện
Bài 1. Cho hai phương trình x2 + x – m = 0 và x2 – mx + 1 = 0. Tìm các giá trị của tham số m để:
a) Hai phương trình có nghiệm chung;
b) Hai phương trình tương đương.
Bài 2. Cho hai phương trình x2 – 2ax + 3 = 0 và x2 – x + a = 0. Tìm các giá trị của tham số m để:
a) Hai phương trình có nghiệm chung;
b) Hai phương trình tương đương.
Bài 3. Cho hai phương trình x2 + ax + b = 0 và x2 + cx + d = 0. Chứng minh nếu hai phương trình trên có nghiệm chung thì: (b – d)2 + (a – c)(ad – bc) = 0.
Bài 4. Cho hai phương trình 2x2 + (3m – 1)x – 3 = 0 và 6x2 – (2m – 3)x – 1 = 0. Số giá trị của m để hai phương trình đó có nghiệm chung?
Bài 5. Hãy tìm số giá trị của m để hai phương trình (m + 4)x2 – 2(2m + 9)x – 4 = 0 và x2 – 2(m + 4)x + 8m + 36 = 0 có nghiệm chung?
Xem thêm các dạng bài tập Toán lớp 9 chọn lọc, có đáp án hay khác:
- Cách giải các dạng toán giải phương trình bậc hai một ẩn cực hay
- Cách giải và biện luận phương trình bậc hai một ẩn cực hay
- Cách giải hệ phương trình 2 ẩn bậc hai cực hay, chi tiết
- Cách giải phương trình bậc nhất hai ẩn cực hay, chi tiết
Tủ sách VIETJACK luyện thi vào 10 cho 2k10 (2025):
Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.
Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:Loạt bài Chuyên đề: Lý thuyết - Bài tập Toán lớp 9 Đại số và Hình học có đáp án có đầy đủ Lý thuyết và các dạng bài được biên soạn bám sát nội dung chương trình sgk Đại số 9 và Hình học 9.
Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.
- Giải Tiếng Anh 9 Global Success
- Giải sgk Tiếng Anh 9 Smart World
- Giải sgk Tiếng Anh 9 Friends plus
- Lớp 9 Kết nối tri thức
- Soạn văn 9 (hay nhất) - KNTT
- Soạn văn 9 (ngắn nhất) - KNTT
- Giải sgk Toán 9 - KNTT
- Giải sgk Khoa học tự nhiên 9 - KNTT
- Giải sgk Lịch Sử 9 - KNTT
- Giải sgk Địa Lí 9 - KNTT
- Giải sgk Giáo dục công dân 9 - KNTT
- Giải sgk Tin học 9 - KNTT
- Giải sgk Công nghệ 9 - KNTT
- Giải sgk Hoạt động trải nghiệm 9 - KNTT
- Giải sgk Âm nhạc 9 - KNTT
- Giải sgk Mĩ thuật 9 - KNTT
- Lớp 9 Chân trời sáng tạo
- Soạn văn 9 (hay nhất) - CTST
- Soạn văn 9 (ngắn nhất) - CTST
- Giải sgk Toán 9 - CTST
- Giải sgk Khoa học tự nhiên 9 - CTST
- Giải sgk Lịch Sử 9 - CTST
- Giải sgk Địa Lí 9 - CTST
- Giải sgk Giáo dục công dân 9 - CTST
- Giải sgk Tin học 9 - CTST
- Giải sgk Công nghệ 9 - CTST
- Giải sgk Hoạt động trải nghiệm 9 - CTST
- Giải sgk Âm nhạc 9 - CTST
- Giải sgk Mĩ thuật 9 - CTST
- Lớp 9 Cánh diều
- Soạn văn 9 Cánh diều (hay nhất)
- Soạn văn 9 Cánh diều (ngắn nhất)
- Giải sgk Toán 9 - Cánh diều
- Giải sgk Khoa học tự nhiên 9 - Cánh diều
- Giải sgk Lịch Sử 9 - Cánh diều
- Giải sgk Địa Lí 9 - Cánh diều
- Giải sgk Giáo dục công dân 9 - Cánh diều
- Giải sgk Tin học 9 - Cánh diều
- Giải sgk Công nghệ 9 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 9 - Cánh diều
- Giải sgk Âm nhạc 9 - Cánh diều
- Giải sgk Mĩ thuật 9 - Cánh diều