Cách phân tích đa thức ax2 + bx + c thành nhân tử để giải phương trình bậc hai



Bài viết Cách phân tích đa thức ax2 + bx + c thành nhân tử để giải phương trình bậc hai lớp 9 với phương pháp giải chi tiết giúp học sinh ôn tập, biết cách làm bài tập Cách phân tích đa thức ax2 + bx + c thành nhân tử để giải phương trình bậc hai.

Cách phân tích đa thức ax2 + bx + c thành nhân tử để giải phương trình bậc hai

A. Phương pháp giải

Cách 1: Đặt nhân tử chung

- Sử dụng trong trường hợp c = 0, khi đó ta có ax2 + bx = x(ax + b)

Ví dụ: Phân tích biểu thức sau thành nhân tử

Cách phân tích đa thức ax^2 + bx + c thành nhân tử để giải phương trình bậc hai

Giải

Cách phân tích đa thức ax^2 + bx + c thành nhân tử để giải phương trình bậc hai

Cách 2: Dùng hằng đẳng thức A2 – B2

- Sử dụng trong trường hợp b = 0 và c < 0, khi đó ta có:

Cách phân tích đa thức ax^2 + bx + c thành nhân tử để giải phương trình bậc hai

Ví dụ: Phân tích biểu thức sau thành nhân tử

a. 9x2 – 16

b. 3x2 – 2

Giải

Cách phân tích đa thức ax^2 + bx + c thành nhân tử để giải phương trình bậc hai

Cách 3: Tách số hạng bx thành hai số hạng rồi nhóm các hạng tử và đặt nhân tử chung

-bổ sung- Để tách bx thành hai hạng tử ta làm như sau:

+ B1: Tìm tích ac, phân tích ac thành tích hai thừa số nguyên

+ B2: Chọn hai thừa số có tổng bằng b

Ví dụ: Phân tích biểu thức sau thành nhân tử

a. 4x2 – 4x - 3

b. x2 – 12x + 27

Giải

a. Tích ac = -12 = (-1).12 = (-12).1 = 2.(-6) = (-2).6

Trong các cặp số trên ta chọn cặp số 2 và -6 vì tổng của chúng bằng -4 = b

⇒ -4x = -6x + 2x

Cách phân tích đa thức ax^2 + bx + c thành nhân tử để giải phương trình bậc hai

b. Tích ac = 27 = 1.27 = (-1).(-27) = 3.9 = (-3).(-9)

Trong các cặp số trên ta chọn cặp số -3 và -9 vì tổng của chúng bằng -12 = b

⇒ -12x = -3x - 9x

Cách phân tích đa thức ax^2 + bx + c thành nhân tử để giải phương trình bậc hai

Cách 4: Tách số hạng (ax2 hoặc c) thành hai số hạng rồi đưa biểu thức

ax2 + bx +c về dạng A2 – B2

Ví dụ: Phân tích biểu thức sau thành nhân tử

a. 4x2 – 4x – 3

b. 3x2 – 8x + 4

Giải

Cách phân tích đa thức ax^2 + bx + c thành nhân tử để giải phương trình bậc hai

Cách 5: Sử dụng nghiệm của phương trình bậc hai

- Nếu phương trình ax2 + bx + c = 0 (a ≠ 0) có hai nghiệm x1, x2 thì:

ax2 + bx + c = a(x – x1)(x – x2)

Ví dụ: Phân tích biểu thức sau thành nhân tử

a. 2x2 – 7x + 3

b. 5x2 + 24x + 19

Giải

a. Xét phương trình 2x2 – 7x + 3 = 0 có: Δ = b2 - 4ac = (-7)2 - 4.2.3 = 25 > 0

Do đó phương trình có 2 nghiệm phân biệt: x1 = 3, x2 = 1/2

Vậy 2x2 – 7x + 3 = Cách phân tích đa thức ax^2 + bx + c thành nhân tử để giải phương trình bậc hai

b. Xét phương trình 5x2 + 24x + 19 = 0 có: Δ = b2 - 4ac = (24)2 - 4.5.19 = 196 > 0

Do đó phương trình có 2 nghiệm phân biệt: x1 = -1, x2 = Cách phân tích đa thức ax^2 + bx + c thành nhân tử để giải phương trình bậc hai

Vậy 5x2 + 24x + 19 = Cách phân tích đa thức ax^2 + bx + c thành nhân tử để giải phương trình bậc hai

B. Bài tập

Câu 1: Khi phân tích biểu thức x2 – 11x + 30 thành nhân tử ta được kết quả là

A. (x – 5)(x – 6)

B. (x + 5)(x + 6)

C. (x – 3)(x – 10)

D. (x – 2)(x – 15)

Giải

Tích ac = 30 = (-5).(-6) = 5.6 = 2.15 = (-2).(-15) = 3.10 = (-3).(-10)

Trong các cặp số trên ta chọn cặp số -5 và -6 vì tổng của chúng bằng -11 = b

Cách phân tích đa thức ax^2 + bx + c thành nhân tử để giải phương trình bậc hai

Đáp án A

Câu 2: Khi phân tích biểu thức Cách phân tích đa thức ax^2 + bx + c thành nhân tử để giải phương trình bậc hai thành nhân tử ta được kết quả là

Cách phân tích đa thức ax^2 + bx + c thành nhân tử để giải phương trình bậc hai

Giải

Cách phân tích đa thức ax^2 + bx + c thành nhân tử để giải phương trình bậc hai

Đáp án C

Câu 3: Khi phân tích biểu thức x2 – 10x + 21thành (x + a)(x + b) thì tổng của a và b bằng bao nhiêu

A. -9

B. -10

C. -11

D. -12

Giải

Cách phân tích đa thức ax^2 + bx + c thành nhân tử để giải phương trình bậc hai

Vậy a + b = -7 – 3 = -10

Đáp án B

Câu 4: Khi phân tích biểu thức 4x2 – 8x + 3 thành (ax + b)(cx + d) thì tích của b và d bằng bao nhiêu

A. 1

B. 2

C. 3

D. 4

Giải

Cách phân tích đa thức ax^2 + bx + c thành nhân tử để giải phương trình bậc hai

Vậy tích bd = (-3).(-1) = 3

Đáp án C

Câu 5: Khi phân tích biểu thức Cách phân tích đa thức ax^2 + bx + c thành nhân tử để giải phương trình bậc hai thành nhân tử thì một trong hai nhân tử là

Cách phân tích đa thức ax^2 + bx + c thành nhân tử để giải phương trình bậc hai

Giải

Xét phương trình Cách phân tích đa thức ax^2 + bx + c thành nhân tử để giải phương trình bậc hai = 0 có:

Cách phân tích đa thức ax^2 + bx + c thành nhân tử để giải phương trình bậc hai

Do đó phương trình có 2 nghiệm phân biệt: Cách phân tích đa thức ax^2 + bx + c thành nhân tử để giải phương trình bậc hai

Cách phân tích đa thức ax^2 + bx + c thành nhân tử để giải phương trình bậc hai

Vậy đáp án D

Câu 6: Khi phân tích biểu thức 9x2 + 12x - 5 thành nhân tử thì một trong hai nhân tử là

A. x - 7

B. x - 2

C. 3x + 2

D. 3x + 5

Giải

Tích ac = -45 = (-5).9 = 5.(-9) = (-3).15 = 3.(-15) = 1.(-45) = (-1).45

Trong các cặp số trên ta chọn cặp số -3 và 15 vì tổng của chúng bằng 12 = b

Cách phân tích đa thức ax^2 + bx + c thành nhân tử để giải phương trình bậc hai

Đáp án D

Câu 7: Kết quả phân tích biểu thức x2 + 7x + 12 thành nhân tử là

A. (x + 1)(x + 12)

B. (x + 3)(x + 4)

C. (x - 3)(x - 4)

D. (x - 1)(x - 12)

Giải

Xét phương trình x2 + 7x + 12 = 0

Phương trình có ∆ = 72 – 4.1.12 = 49 – 48 = 1 > 0 nên có hai nghiệm phân biệt

Cách phân tích đa thức ax^2 + bx + c thành nhân tử để giải phương trình bậc hai

⇒ x2 + 7x + 12 = (x + 3)(x + 4)

Đáp án B

Câu 8: Biểu thức nào sau đây có kết quả phân tích thành nhân tử là (3x – 2)(-x + 7)

A. -3x2 + 13x - 14

B. -3x2 + 33x - 14

C. -3x2 + 23x - 14

D. -3x2 + 3x - 14

Giải

Ta có (3x – 2)(-x + 7) = -3x2 + 21x + 2x -14 = -3x2 + 23x - 14

Đáp án C

C. Bài tập tự luyện

Bài 1. Phân tích các đa thức sau thành nhân tử

a) x2 – 7x + 6;

b) 2x-5x+3;

c) (2-3)x2+23x-(2+3).

Bài 2. Bạn Hoàng đưa ra khẳng định: “Đa thức 4x-7x+3 được phân tích thành (x – 1)(4x – 3)”. Theo em, khẳng định trên là đúng hai sai, nếu sai hãy sửa lại.

Bài 3. Điền vào chỗ chấm sau.

a) – 3x2 – 2x + 5 = (x – 1)( … );

b) 4x2 – 25x + 6 = ( … )(x – 6);

c) 4x2 – 5x + 1 = ( … )( … ).

Bài 4. Cho đa thức sau: (2x-2)2-1-(x+1)(x-1)

a) Thực hiện thu gọn đa thức;

b) Phân tích đa thức vừa thu gọn thành nhân tử.

Bài 5. Cho đa thức 5x2-(2-5)x-2 được phân tích thành (ax + b)(cx + d). Hãy tính a + b + c + d?

Xem thêm các dạng bài tập Toán lớp 9 chọn lọc, có đáp án hay khác:

ĐỀ THI, GIÁO ÁN, SÁCH ĐỀ THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 9

Bộ giáo án, bài giảng powerpoint, đề thi dành cho giáo viên và sách dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài hỗ trợ đăng ký : 084 283 45 85

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Loạt bài Chuyên đề: Lý thuyết - Bài tập Toán lớp 9 Đại số và Hình học có đáp án có đầy đủ Lý thuyết và các dạng bài được biên soạn bám sát nội dung chương trình sgk Đại số 9 và Hình học 9.

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


chuong-4-ham-so-y-ax2-phuong-trinh-bac-hai-mot-an.jsp


Giải bài tập lớp 9 sách mới các môn học
Tài liệu giáo viên