Cách tìm m để phương trình bậc hai có nghiệm thỏa mãn điều kiện
Bài viết Cách tìm m để phương trình bậc hai có nghiệm thỏa mãn điều kiện lớp 9 với phương pháp giải chi tiết giúp học sinh ôn tập, biết cách làm bài tập Cách tìm m để phương trình bậc hai có nghiệm thỏa mãn điều kiện.
Cách tìm m để phương trình bậc hai có nghiệm thỏa mãn điều kiện
A. Phương pháp giải
Cho phương trình: ax2 + bx + c = 0 (a ≠ 0)
1. Điều kiện để phương trình có hai nghiệm phân biệt sao cho x1 = px2 (với p là một số thực)
B1- Tìm điều kiện để phương trình có hai nghiệm phân biệt .
B2- Áp dụng định lý Vi - ét tìm:
B3- Kết hợp (1) và (3) giải hệ phương trình:
B4- Thay x1 và x2 vào (2) ⇒ Tìm giá trị tham số.
2. Điều kiện để phương trình có hai nghiệm thỏa mãn điều kiện: |x1 - x2| = k(k ∈ R)
- Bình phương trình hai vế: (x1 - x2)2 = k2 ⇔ ... ⇔ (x1 + x2)2 - 4x1x2 = k2
- Áp dụng định lý Vi-ét tính x1 + x2 và x1x2 thay vào biểu thức ⇒ kết luận.
3. So sánh nghiệm của phương trình bậc hai với một số bất kỳ:
B1: Tìm điều kiện để phương trình có nghiệm (∆ ≥ 0)
B2: Áp dụng Vi-ét tính x1 + x2 và x1x2 (*)
+/ Với bài toán: Tìm m để phương trình có hai nghiệm > α
Ta có: . Thay biểu thức Vi-ét vào hệ(*) để tìm m
+/ Với bài toán: Tìm m để phương trình có hai nghiệm < α
Ta có: (*).Thay biểu thức Vi-ét vào hệ(*) để tìm m
+/ Với bài toán: Tìm m để phương trình có hai nghiệm: x1 < α < x2
Ta có: (x1 - α)(x2 - α) < 0 (*). Thay biểu thức Vi-ét vào (*) để tìm m
Ví dụ 1: Cho phương trình: x2 - (2m - 1)x + m2 - 1 = 0 (x là ẩn số)
a) Tìm điều kiện của m để phương trình đã cho có hai nghiệm phân biệt.
b) Định m để hai nghiệm x1, x2 của phương trình đã cho thỏa mãn (x1 - x2)2 = x1 - 3x2
Giải
a) Δ = (2m - 1)2 - 4.(m2 - 1)= 4m2 - 4m + 1 - 4m2 + 4 = 5- 4m
Phương trình có hai nghiệm phân biệt khi Δ > 0 ⇔ 5 - 4m > 0 ⇔ m <
b) Phương trình có hai nghiệm ⇔ m ≤
Kết hợp với điều kiện (thỏa mãn) là các giá trị cần tìm.
Vậy với m = 1 hoặc m = - 1 thì phương trình đã cho có 2 nghiệm x1, x2 thỏa mãn (x1 - x2)2 = x1 - 3x2.
Ví dụ 2: Cho phương trình x2 - 10mx + 9m = 0 (m là tham số)
a) Giải phương trình đã cho với m = 1.
b) Tìm các giá trị của tham số m để phương trình đã cho có hai nghiệm phân biệt x1, x2 thỏa điều kiện x1 - 9x2 = 0.
Giải
a) Với m = 1 phương trình đã cho trở thành x2 - 10x + 9 = 0.
Ta có: a + b + c = 0 nên phương trình có hai nghiệm phân biệt là
b) Δ' = (-5m)2 - 1.9m = 25m2 - 9m
Điều kiện phương trình đã cho có hai nghiệm phân biệt là Δ' > 0 ⇔ 25m2 - 9m > 0
Theo hệ thức Vi-ét ta có
Từ (*) và giả thiết ta có hệ phương trình:
Thay vào phương trình (**) ta có:
Với m = 0 ta có Δ' = 25m2 - 9m = 0 không thỏa mãn điều kiện phương trình có 2 nghiệm phân biệt.
Với m = 1 ta có Δ' = 25m2 - 9m = 16 > 0 thỏa mãn điều kiện để phương trình có 2 nghiệm phân biệt.
Kết luận: Vậy với m = 1thì phương trình đã cho có hai nghiệm phân biệt x1, x2 thỏa điều kiện x1-9x2 = 0
Ví dụ 3: Cho phương trình x2 - 2(m - 1)x + 2m - 5 = 0 (m là tham số).
a) Chứng minh rằng phương trình luôn có hai nghiệm phân biệt với mọi m.
b) Tìm giá trị của m để phương trình có hai nghiệm x1, x2 thỏa mãn x1 < 1 < x2
Giải
a) Ta có: Δ = [-2(m - 1)]2 - 4.1.(2m - 5) = 4m2 - 12m + 22
= (2m)2 - 2.2m.3 + 9 + 13 = (2m-3)2 + 13 > 0 (luôn đúng với mọi m)
Vậy phương trình luôn có hai nghiệm phân biệt với mọi m.
b) Theo hệ thức Vi-ét, ta có:
Ta có: x1 < 1 < x2 ⇒ ⇒(x1 - 1)(x2 - 1) < 0⇒x1 x2 - (x1+x2)+1 < 0 (II)
Thay (I) vào (II) ta có: (2m - 5) - (2m - 2) + 1 < 0 ⇔ 0.m - 2 < 0 (đúng với mọi m).
Vậy với mọi m thì phương trình trên có hai nghiệm x1, x2 thỏa mãn x1 < 1 < x2
B. Bài tập
Câu 1: Cho phương trình x2 - (2m + 2)x + 2m = 0 (m là tham số). Tìm m để phương trình có hai nghiệm x1, x2 thỏa mãn
A. m = 0
B. m = 1
C. m = 3
D. m = 4
Giải
Phương trình x2 - (2m + 2)x + 2m = 0 ⇔ x2 - 2(m + 1)x + 2m = 0
Điều kiện PT có 2 nghiệm không âm x1, x2 là
Vậy m = 0 là giá trị cần tìm.
Đáp án đúng là A
Câu 2: Cho phương trình x2 + 2x - m2 - 1 = 0 (m là tham số)
Tìm m để phương trình trên có hai nghiệm thỏa mãn x1 = -3x2
A. m = 3
B. m = ±1
C. m = ±√2
D. m = -2
Giải
Ta có: Δ' = 12 - 1.(-m2 - 1)=1 + m2 + 1 = m2 + 2 > 0 (luôn đúng với mọi m)
Suy ra phương trình luôn có hai nghiệm phân biệt với mọi m.
Theo Vi-ét ta có:
Ta có: x1 + x2 = -2 (do trên) và x1 = -3x2 nên có hệ phương trình sau:
Thay (*) vào biểu thức x1.x2 = -m2 - 1 ta được:
Vậy m = ±√2 là các giá trị cần tìm.
Đáp án đúng là C
Câu 3: Cho phương trình x2 - 2(m + 1)x + m2 + m - 1 = 0 (m là tham số)
Gọi S là tập tất cả các giá trị của m để phương trình có hai nghiệm phân biệt thỏa mãn điều kiện . Tính tích của các giá trị đó
Giải
Δ' = (m + 1)2 - (m2 + m - 1) = m2 + 2m + 1 - m2 - m + 1 = m + 2
Phương trình đã cho có hai nghiệm phân biệt ⇔ Δ' > 0 ⇔ m + 2 > 0 ⇔ m > -2
Áp dụng hệ thức Vi-ét, ta có:
Do đó:
Kết hợp với điều kiện m > -2 là các giá trị cần tìm.
Đáp án đúng là C
Câu 4: Cho phương trình (m là tham số). Tìm tất cả các giá trị của m để phương trình đã cho có hai nghiệm thỏa mãn
Giải
Để phương trình đã cho có hai nghiệm phân biệt thì ∆ ≥ 0
Phương trình có nghiệm khác 0
Kết hợp với điều kiện ta có
Vậy là các giá trị cần tìm.
Đáp án đúng là B
Câu 5: Cho phương trình (m là tham số).
Tìm m để phương trình có hai nghiệm là số đo của 2 cạnh góc vuông của tam giác vuông có cạnh huyền bằng 3.
A. m = ±2
B. m = ±√2
C. m = - 1
D. m = 0
Giải
Ta có: , luôn đúng với mọi m
Suy ra phương trình luôn có hai nghiệm phân biệt với mọi giá trị m.
Giả sử phương trình có hai nghiệm là x1, x2.
Áp dụng Vi-et ta có:
Theo đề bài x1, x2 là số đo của 2 cạnh góc vuông của tam giác vuông có cạnh huyền bằng 3 nên ta có:
Vậy m = ±2 là các giá trị cần tìm.
Đáp án đúng là A
Câu 6: Cho phương trình x2 - 2x - 2m2 = 0 với x là ẩn số.
Tìm giá trị của m để hai nghiệm của phương trình thỏa hệ thức x12 = 4x22.
A. m = ±2
B. m = ±1
C. m = -6
D. m = 3
Giải
Ta có: Δ' = (-1)2 - (-2m2 )= 1 + 2m2 > 0
Suy ra phương trình luôn có 2 nghiệm phân biệt với mọi giá trị của m.
Giả sử phương trình có hai nghiệm x1, x2 theo hệ thức Vi-ét:
Vậy m = ±2 là giá trị cần tìm.
Đáp án đúng là A
Câu 7: Cho phương trình x2 – 5x + m = 0 (m là tham số).
Tìm m để phương trình trên có hai nghiệm x1, x2 thỏa mãn |x1 - x2| = 3.
A. m = 2
B. m = 4
C. m = 6
D. m = 8
Giải
Ta có: ∆ = 25 – 4m
Để phương trình đã cho có 2 nghiệm phân biệt x1, x2 thì
Theo Vi-ét, ta có: x1 + x2 = 5 (1) và x1.x2 = m (3)
Mặt khác theo giả thiết ta có: |x1 - x2| = 3 (2)
Giải hệ (1) và (2):
Với x1 = 4, x2 = 1 thay vào (3) ta được m = 4
Với x1 = 1, x2 = 4 thay vào (3) ta được m = 4
m = 4 thỏa mãn điều kiện (*) , vậy m = 4 là giá trị cần tìm
Đáp án đúng là B
Câu 8: Cho phương trình bậc hai x2 + 2(m - 1)x - (m + 1)= 0
Tìm giá trị m để phương trình có một nghiệm lớn hơn và một nghiệm nhỏ hơn 1.
Giải
Ta có:
Suy ra phương trình luôn có hai nghiệm phân biệt x1, x2 với mọi m.
Theo hệ thức Vi- ét ta có:
Để phương trình có một nghiệm lớn hơn , một nghiệm nhỏ hơn 1 thì (x1 - 1)(x2 - 1) < 0
Đáp án đúng là C
Câu 9: Cho phương trình bậc hai: x2 + 2(m - 1)x - (m + 1) = 0
Tìm giá trị m để phương trình có hai nghiệm lớn hơn 2
A. m > - 1
B. m > 2
C. m < 2
D. m < 0
Giải
Ta có:
Suy ra phương trình luôn có hai nghiệm phân biệt x1, x2 với mọi m.
Theo hệ thức Vi- ét ta có:
Để phương trình có hai nghiệm đều nhỏ hơn 2 thì:
Vậy đáp án đúng là D
Câu 10: Cho phương trình x2 - (2m + 3)x + m2 + 3m + 2 = 0
Xác định m để phương trình có hai nghiệm thỏa mãn -3 < x1 < x2 < 6
A. m > 1
B. -2 < m < 2
C. -4 < m < 4
D. m < 3
Giải
Phương trình đã cho luôn có hai nghiệm phân biệt với mọi m.
Theo hệ thức Vi-et ta có:
Vì -3 < x1 < x2 < 6 nên
Vậy -4 < m < 4.
Đáp án đúng là C
C. Bài tập tự luyện
Bài 1. Tìm các giá trị của tham số m để các phương trình sau có hai nghiệm phân biệt:
a) x2 + 2x + m = 0;
b) – x2 + 2mx – m2 – m = 0;
c) mx2 – 3(m + 1)x + m2 – 13m – 6 = 0.
Bài 2. Cho phương trình x2 – (– 4m – 1)x + 2(m – 4) = 0. Tìm các giá trị của m để phương trình có hai nghiệm x1, x2 thỏa mãn:
a) x2 – x1 = 17;
b) Biểu thức A = (x1 – x2)2 có giá trị nhỏ nhất;
c) Tìm hệ thức liên hệ giữa hai nghiệm không phụ thuộc vào m.
Bài 3. Cho phương trình x2 – 5x + m + 4 = 0 (m là tham số). Gọi x1, x2 là hai nghiệm của phương trình. Tìm giá trị của m để phương trình thỏa mãn:
x1(1 – 3x2) + x2(1 – 3x1) = m2 – 23.
Bài 4. Cho phương trình x2 – (2m + 1)x + m2 + m – 6 = 0.
a) Chứng minh phương trình luôn có hai nghiệm phân biệt;
b) Tìm các giá trị của m để phương trình có hai nghiệm phân biệt;
c) Gọi x1, x2 là hai nghiệm của phương trình. Tìm giá trị nhỏ nhất của biểu thức ;
d) Tìm các giá trị của m để phương trình có hai nghiệm x1, x2 thỏa mãn
Bài 5. Cho hai phương trình x2 – mx – m – 1 = 0. Tìm các giá trị của tham số m để phương trình
a) Có hai nghiệm x1, x2 thỏa mãn ;
b) Có hai nghiệm x1, x2 thỏa mãn ;
c) Có hai nghiệm x1, x2. Từ đó, hãy lập phương trình bậc hai có u và v là nghiệm biết rằng và .
Xem thêm các dạng bài tập Toán lớp 9 chọn lọc, có đáp án hay khác:
- Cách lập phương trình bậc hai khi biết hai nghiệm của phương trình đó
- Tìm m để phương trình bậc hai có hai nghiệm cùng dấu, trái dấu
- Tìm hệ thức liên hệ giữa hai nghiệm không phụ thuộc vào tham số | Tìm hệ thức liên hệ giữa x1 x2 độc lập với m
- Cách giải hệ phương trình đối xứng hai ẩn cực hay
Tủ sách VIETJACK luyện thi vào 10 cho 2k10 (2025):
Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.
Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:Loạt bài Chuyên đề: Lý thuyết - Bài tập Toán lớp 9 Đại số và Hình học có đáp án có đầy đủ Lý thuyết và các dạng bài được biên soạn bám sát nội dung chương trình sgk Đại số 9 và Hình học 9.
Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.
- Giải Tiếng Anh 9 Global Success
- Giải sgk Tiếng Anh 9 Smart World
- Giải sgk Tiếng Anh 9 Friends plus
- Lớp 9 Kết nối tri thức
- Soạn văn 9 (hay nhất) - KNTT
- Soạn văn 9 (ngắn nhất) - KNTT
- Giải sgk Toán 9 - KNTT
- Giải sgk Khoa học tự nhiên 9 - KNTT
- Giải sgk Lịch Sử 9 - KNTT
- Giải sgk Địa Lí 9 - KNTT
- Giải sgk Giáo dục công dân 9 - KNTT
- Giải sgk Tin học 9 - KNTT
- Giải sgk Công nghệ 9 - KNTT
- Giải sgk Hoạt động trải nghiệm 9 - KNTT
- Giải sgk Âm nhạc 9 - KNTT
- Giải sgk Mĩ thuật 9 - KNTT
- Lớp 9 Chân trời sáng tạo
- Soạn văn 9 (hay nhất) - CTST
- Soạn văn 9 (ngắn nhất) - CTST
- Giải sgk Toán 9 - CTST
- Giải sgk Khoa học tự nhiên 9 - CTST
- Giải sgk Lịch Sử 9 - CTST
- Giải sgk Địa Lí 9 - CTST
- Giải sgk Giáo dục công dân 9 - CTST
- Giải sgk Tin học 9 - CTST
- Giải sgk Công nghệ 9 - CTST
- Giải sgk Hoạt động trải nghiệm 9 - CTST
- Giải sgk Âm nhạc 9 - CTST
- Giải sgk Mĩ thuật 9 - CTST
- Lớp 9 Cánh diều
- Soạn văn 9 Cánh diều (hay nhất)
- Soạn văn 9 Cánh diều (ngắn nhất)
- Giải sgk Toán 9 - Cánh diều
- Giải sgk Khoa học tự nhiên 9 - Cánh diều
- Giải sgk Lịch Sử 9 - Cánh diều
- Giải sgk Địa Lí 9 - Cánh diều
- Giải sgk Giáo dục công dân 9 - Cánh diều
- Giải sgk Tin học 9 - Cánh diều
- Giải sgk Công nghệ 9 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 9 - Cánh diều
- Giải sgk Âm nhạc 9 - Cánh diều
- Giải sgk Mĩ thuật 9 - Cánh diều