Phương pháp giải phương trình đưa về dạng tích cực hay



Phương pháp giải phương trình đưa về dạng tích cực hay

A. Phương pháp giải

Để giải phương trình đưa về dạng tích ta làm như sau:

B1: Chuyển vế, phân tích vế trái thành nhân tử, vế phải bằng không

B2: Xét từng nhân tử bằng không để tìm nghiệm

Ví dụ: Giải các phương trình sau

a. (x – 2)( 2x + 10) = 0

b. x3 - 3x2 - 3x - 4 = 0

c. (x – 1)3 + x3 + (x + 1)3 + (x – 2)3 = 0

Giải

a. Phương pháp giải phương trình đưa về dạng tích cực hay - Toán lớp 9

Vậy phương trình có 2 nghiệm: x = 2, x = -5

Phương pháp giải phương trình đưa về dạng tích cực hay - Toán lớp 9

Vậy phương trình có nghiệm x = 4

Phương pháp giải phương trình đưa về dạng tích cực hay - Toán lớp 9

B. Bài tập

Câu 1: Số nghiệm của phương trình  x(x – 2)(x2 + x + 2) = 0 là

A. 0

B. 1

C. 2

D. 3

Giải

Phương trình  x(x – 2)(x2 + x + 2) = 0 ⇔  Phương pháp giải phương trình đưa về dạng tích cực hay - Toán lớp 9

Phương trình (1) có nghiệm x = 0

Phương trình (2) có nghiệm x = 2

Phương trình (3) có ∆ = 12 – 4.1.2 = -7 < 0 nên phương trình vô nghiệm

Vậy phương trình đã cho có 2 nghiệm

Đáp án là C

Câu 2: Tổng các nghiệm của phương trình  (x2 + 2x - 5)2 = (x2 - x + 5)2  là

Phương pháp giải phương trình đưa về dạng tích cực hay - Toán lớp 9

Giải

Phương trình  (x2 + 2x - 5)2 = (x2 - x + 5)2

⇔  (x2 + 2x - 5)2 - (x2 - x + 5)2 = 0

⇔ [(x2 + 2x - 5) - (x2 - x + 5)][(x2 + 2x - 5) + (x2 - x + 5)] = 0

⇔ (3x – 10)(2x2 + x) = 0

Phương pháp giải phương trình đưa về dạng tích cực hay - Toán lớp 9

Đáp án là A

Câu 3: Nghiệm lớn nhất của phương trình 2x3 – 7x2 + 4x + 1 = 0

Phương pháp giải phương trình đưa về dạng tích cực hay - Toán lớp 9

Giải

Phương trình  2x3 – 7x2 + 4x + 1 = 0

⇔ (2x3 – 5x2 – x) – (2x2 – 5x – 1) = 0

⇔ x(2x2 – 5x – 1) – (2x2 – 5x – 1) = 0

⇔ (2x2 – 5x – 1)(x – 1)  = 0

Phương pháp giải phương trình đưa về dạng tích cực hay - Toán lớp 9

Phương trình (1) có nghiệm x = 1

Phương trình (2) có ∆ = (-5)2 – 4.2.(-1) = 25 + 8 = 33 > 0 nên phương trình có 2 nghiệm phân biệt: Phương pháp giải phương trình đưa về dạng tích cực hay - Toán lớp 9

Vậy nghiệm lớn nhất của phương trình là: Phương pháp giải phương trình đưa về dạng tích cực hay - Toán lớp 9

Đáp án là C

Câu 4: Tích các nghiệm của phương trình  x4 – x2 + 2x - 1 = 0

A. -1               

B. 2

C. -2              

D. 3

Giải

Phương pháp giải phương trình đưa về dạng tích cực hay - Toán lớp 9

Phương trình (1) có ∆ = 12 – 4.1.(-1) = 5 > 0 nên có 2 nghiệm phân biệt: Phương pháp giải phương trình đưa về dạng tích cực hay - Toán lớp 9

Phương trình (2) có ∆ = (-1)2 – 4.1.1 = -3 < 0 nên vô nghiệm

Vậy phương trình có 2 nghiệm: Phương pháp giải phương trình đưa về dạng tích cực hay - Toán lớp 9

Suy ra tích các nghiệm của phương trình là: Phương pháp giải phương trình đưa về dạng tích cực hay - Toán lớp 9

Đáp án là A

Câu 5: Số nghiệm của phương trình  x4 = 24x + 32 là

A. 0

B. 1

C. 2

D. 3

Giải

Phương pháp giải phương trình đưa về dạng tích cực hay - Toán lớp 9

Phương trình (1) có ∆ = 22 – 4.1.8 = -28 < 0 nên phương trình vô nghiệm

Phương trình (2) có ∆ = (-2)2 – 4.1.(-4)  = 20 > 0 nên phương trình có hai nghiệm phân biệt:

Phương pháp giải phương trình đưa về dạng tích cực hay - Toán lớp 9

Vậy phương trình đã cho có 2 nghiệm

Đáp án là C

Câu 6: Số nghiệm của phương trình  x5 + x3 + x2 + 1 = 0 là

A. 0

B. 1

C. 2

D. 3

Giải

Phương pháp giải phương trình đưa về dạng tích cực hay - Toán lớp 9

Phương trình (1) vô nghiệm

Phương trình (2) ⇔ x3 = -1 ⇔ x = -1

Vậy phương trình có 1 nghiệm

Đáp án là B

Câu 7: Nghiệm nhỏ nhất của phương trình (x2 - 4)(3x - 2)=(x - 2)(x + 1)  là

Phương pháp giải phương trình đưa về dạng tích cực hay - Toán lớp 9

Giải

Phương pháp giải phương trình đưa về dạng tích cực hay - Toán lớp 9

Phương trình (1) có nghiệm x = 2

Phương trình (2) có ∆ = 32 – 4.3.(-5) = 69 > 0 nên phương trình có hai nghiệm phân biệt: Phương pháp giải phương trình đưa về dạng tích cực hay - Toán lớp 9

Vậy nghiệm nhỏ nhất của phương trình là: Phương pháp giải phương trình đưa về dạng tích cực hay - Toán lớp 9

Đáp án đúng là D

Câu 8: Số nghiệm của phương trình Phương pháp giải phương trình đưa về dạng tích cực hay - Toán lớp 9 là

A. 0

B. 1

C. 2

D. 3

Giải

Phương pháp giải phương trình đưa về dạng tích cực hay - Toán lớp 9

Phương trình (1) có nghiệm x = 1 (thỏa mãn điều kiện)

Phương pháp giải phương trình đưa về dạng tích cực hay - Toán lớp 9

Thử lại ta thấy x = 1 là nghiệm của phương trình (2) và thỏa mãn điều kiện nên nhận

x = 6 không là nghiệm của phương trình (2) nên loại

Vậy phương trình có 1 nghiệm x = 1

Đáp án là B

Câu 9: Phương trình (x2 + x - 2)2 + (x - 1)4 = 0  sau khi đưa về phương trình tích là phương trình nào sau đây

Phương pháp giải phương trình đưa về dạng tích cực hay - Toán lớp 9

Giải

Phương pháp giải phương trình đưa về dạng tích cực hay - Toán lớp 9

Đáp án đúng là B

Xem thêm các dạng bài tập Toán lớp 9 chọn lọc, có đáp án hay khác:

Giới thiệu kênh Youtube VietJack

Ngân hàng trắc nghiệm lớp 9 tại khoahoc.vietjack.com

CHỈ CÒN 250K 1 KHÓA HỌC BẤT KÌ, VIETJACK HỖ TRỢ DỊCH COVID

Phụ huynh đăng ký mua khóa học lớp 9 cho con, được tặng miễn phí khóa ôn thi học kì. Cha mẹ hãy đăng ký học thử cho con và được tư vấn miễn phí. Đăng ký ngay!

Tổng đài hỗ trợ đăng ký khóa học: 084 283 45 85

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Nhóm học tập facebook miễn phí cho teen 2k6: fb.com/groups/hoctap2k6/

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Loạt bài Chuyên đề: Lý thuyết - Bài tập Toán lớp 9 Đại số và Hình học có đáp án có đầy đủ Lý thuyết và các dạng bài được biên soạn bám sát nội dung chương trình sgk Đại số 9 và Hình học 9.

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


chuong-4-ham-so-y-ax2-phuong-trinh-bac-hai-mot-an.jsp


Nhóm học tập 2k7