Xác định cặp số là nghiệm của hệ phương trình lớp 9 (cách giải + bài tập)
Chuyên đề phương pháp giải bài tập Xác định cặp số là nghiệm của hệ phương trình lớp 9 chương trình sách mới hay, chi tiết với bài tập tự luyện đa dạng giúp học sinh ôn tập, biết cách làm bài tập Xác định cặp số là nghiệm của hệ phương trình.
Xác định cặp số là nghiệm của hệ phương trình lớp 9 (cách giải + bài tập)
1. Phương pháp giải
• Mỗi cặp số (x0; y0) được gọi là một nghiệm của hệ phương trình nếu nó đồng thời là nghiệm của cả hai phương trình ax + by = c và a'x + b'y = c'.
• Các bước thực hiện bài toán xác định cặp số là nghiệm của hệ phương trình.
- Bước 1: Thay giá trị x = x0 và y = y0 vào cả hai phương trình trong hệ.
- Bước 2: Kiểm tra điều kiện thỏa mãn.
+ Nếu cả hai phương trình đều đúng thì cặp số (x0; y0) là nghiệm của hệ phương trình.
+ Nếu một trong hai phương trình sai thì cặp số (x0; y0) không là nghiệm của hệ phương trình.
2. Ví dụ minh họa
Ví dụ 1. Đâu là nghiệm của hệ phương trình trong các cặp số dưới đây?
a) (0; 2);
b) (0; 4);
c) (1; 2).
Hướng dẫn giải
a) Thay x = 0, y = 2 vào hệ phương trình , ta được:
Do đó, cặp số (0; 2) không là nghiệm của hệ phương trình .
b) Thay x = 0, y = 4 vào hệ phương trình , ta được: (đúng).
Do đó, cặp số (0; 4) là cặp nghiệm của hệ phương trình .
c) Thay x = 1; y = 2 vào hệ phương trình , ta được .
Do đó, cặp số (1; 2) không là nghiệm của hệ phương trình .
Ví dụ 2. Để chuẩn bị cho buổi dã ngoại, An mua hai loại thực phẩm là xúc xích và bánh mì. Giá tiền xúc xích là 10 nghìn/chiếc, giá tiền của bánh mì là 5 nghìn/chiếc. An đã bỏ ra 100 nghìn đồng để mua số lượng 12 sản phẩm của cả hai loại trên. Gọi x và y lần lượt là số chiếc xúc xích và bánh mì An đã mua.
a) Viết hệ phương trình hai ẩn x, y để biểu diễn bài toán.
b) Hỏi cặp số (8; 4) có phải là nghiệm của hệ phương trình lập được ở câu a hay không? Vì sao?
Hướng dẫn giải
a) Gọi x và y lần lượt là số chiếc xúc xích và bánh mì An đã mua (x, y ∈ ℕ*)
An đã mua tổng số lượng là 12 sản phẩm nên ta có phương trình x + y = 12 (1).
Số tiền để mua x chiếc xúc xích là: 10x (nghìn).
Số tiền để mua y chiếc bánh mì là: 5y (nghìn).
An đã bỏ ra 100 nghìn đồng để mua hai loại trên nên ta có phương trình:
10x + 5y = 100 (nghìn) (2)
Từ (1) và (2) ta có hệ phương trình:.
b) Thay x = 8, y = 4 vào hệ phương trình vừa lập ở phần a, ta có:
(đúng).
Do đó, cặp số (8; 4) là nghiệm của hệ phương trình .
3. Bài tập tự luyện
Bài 1. Nghiệm của hệ phương trình là
A. (−1; 3).
B. (−1; −3).
C. (3; −1).
D. (3; 1).
Hướng dẫn giải
Đáp án đúng là: C
• Thay x = −1, y = 3 vào hệ phương trình , ta được:
. Do đó, (−1; 3) không là nghiệm của hệ phương trình.
• Thay x = −1, y = −3 vào hệ phương trình , ta được:
. Do đó, (−1; −3) không là nghiệm của hệ phương trình.
• Thay x = 3, y = −1 vào hệ phương trình , ta được:
. Do đó, (3; −1) là nghiệm của hệ phương trình.
• Thay x = 3, y = 1 vào hệ phương trình , ta được:
. Do đó, (3; 1) không là nghiệm của hệ phương trình.
Vậy chọn đáp án C.
Bài 2. Cặp số (3; −1) là nghiệm của hệ phương trình nào sau đây?
A.
B.
C.
D.
Hướng dẫn giải
Đáp án đúng là: A
• Thay x = 3, y = −1 vào hệ phương trình , ta được: .
Do đó, cặp số (3; −1) là nghiệm của hệ phương trình .
• Thay x = 3, y = −1 vào hệ phương trình , ta được: .
Do đó, cặp số (3; −1) không là nghiệm của hệ phương trình .
• Thay x = 3, y = −1 vào hệ phương trình , ta được:
Do đó, cặp số (3; −1) không là nghiệm của hệ phương trình .
• Thay x = 3, y = −1 vào hệ phương trình , ta được:
Do đó, cặp số (3; −1) không là nghiệm của hệ phương trình .
Bài 3. Nghiệm của hệ phương trình là
A. (2; 3).
B. (3; 2).
C. (−2; −3).
D. (−3; 2).
Hướng dẫn giải
Đáp án đúng là: B
• Thay x = 2, y = 3 vào hệ phương trình , ta được: .
Do đó, (2; 3) không là nghiệm của hệ phương trình .
• Thay x = 3, y = 2 vào hệ phương trình , ta được: .
Do đó, (3; 2) là nghiệm của hệ phương trình .
• Thay x = −2, y = −3 vào hệ phương trình , ta được: .
Do đó, (−2; −3) không là nghiệm của hệ phương trình .
• Thay x = −3, y = 2 vào hệ phương trình , ta được:
Do đó, (−3; 2) không là nghiệm của hệ phương trình .
Vậy chọn đáp án B.
Bài 4. Cặp số (6; 4) là nghiệm của hệ phương trình nào dưới đây?
A. .
B. .
C. .
D..
Hướng dẫn giải
Đáp án đúng là: C
• Thay x = 6, y = 4 vào hệ phương trình , ta được: .
Do đó, (6; 4) không là nghiệm của hệ phương trình .
• Thay x = 6, y = 4 vào hệ phương trình , ta được: .
Do đó, (6; 4) không là nghiệm của hệ phương trình .
• Thay x = 6, y = 4 vào hệ phương trình , ta được: .
Do đó, (6; 4) là nghiệm của hệ phương trình .
• Thay x = 6, y = 4 vào hệ phương trình , ta được: .
Do đó, (6; 4) không là nghiệm của hệ phương trình .
Vậy chọn đáp án C.
Bài 5. Cặp nghiệm của hệ phương trình là:
A. (6; −6).
B. (6; 6).
C. (6; 3).
D. (3; 6).
Hướng dẫn giải
Đáp án đúng là: B
• Thay x = 6, y = −6 vào hệ phương trình , ta được:
.
Do đó, (6; −6) không là nghiệm của hệ phương trình .
• Thay x = 6, y = 6 vào hệ phương trình , ta được: .
Do đó, (6; 6) là nghiệm của hệ phương trình .
• Thay x = 6, y = 3 vào hệ phương trình , ta được: .
Do đó, (6; 3) không là nghiệm của hệ phương trình .
• Thay x = 3, y = 6 vào hệ phương trình , ta được: .
Do đó, (3; 6) không là nghiệm của hệ phương trình .
Vậy chọn đáp án B.
Bài 6. Cho các cặp số sau (2; 3), (3; 4), (4; 5), (−1; 0). Hỏi có bao nhiêu cặp số đã cho là nghiệm của hệ phương trình ?
A. 1.
B. 0.
C. 2.
D. 3.
Hướng dẫn giải
Đáp án đúng là: B
• Thay x = 2, y = 3 vào hệ phương trình , ta được:
Do đó, (2; 3) không là nghiệm của hệ phương trình .
• Thay x = 3, y = 4 vào hệ phương trình , ta được:
Do đó, (3; 4) không là nghiệm của hệ phương trình .
• Thay x = 4, y = 5 vào hệ phương trình , ta được:
Do đó, (4; 5) không là nghiệm của hệ phương trình .
• Thay x = −1, y = 0 vào hệ phương trình , ta được: .
Do đó, (−1; 0) không là nghiệm của hệ phương trình .
Vậy không có cặp số nào đã cho là nghiệm của hệ phương trình .
Vậy chọn B.
Bài 7. Giá trị của tham số a để cặp số (2; −1) là nghiệm của hệ phương trình là
A. a = 1.
B. a = −1.
C. a = 2.
D. a = −2.
Hướng dẫn giải
Đáp án đúng là: A
Thay x = 2, y = −1 vào hệ phương trình , ta được:
suy ra do đó a = 1.
Bài 8. Giá trị của tham số m để hệ phương trình nhận cặp số (1; 2) làm nghiệm là:
A. m = 2.
B. m = 1.
C. m = 0.
D. m = −1.
Hướng dẫn giải
Đáp án đúng là: B
Thay x = 1, y = 2 vào hệ phương trình, ta được hay .
Suy ra m = 1 thỏa mãn.
Sử dụng dữ kiện bài toán dưới đây để trả lời Bài 9, 10.
Mảnh vườn hình chữ nhật có chu vi 64 m. Nếu tăng chiều dài thêm 2 m và tăng chiều rộng thêm 3 m thì diện tích tăng thêm 88 m2. Giả sử chiều dài mảnh vườn đó là x (m), chiều rộng mảnh vườn đó là y (m) (0 < y < x).
Bài 9. Hệ phương trình nào dưới đây biểu diễn bài toán trên?
A. .
B. .
C. .
D. .
Hướng dẫn giải
Đáp án đúng là: D
Giả sử chiều dài mảnh vườn đó là x (m), chiều rộng mảnh vườn đó là y (m)
(0 < y < x).
Nửa chu vi của mảnh vườn là: 64 : 2 = 32 (m).
Do đó, ta có phương trình x + y = 32 (1).
Diện tích ban đầu của mảnh vườn là: xy (m2).
Sau khi tăng chiều dài 2 m thì chiều dài mới của mảnh vườn là: x + 2 (m).
Sau khi tăng chiều rộng 3 m thì chiều rộng mới của mảnh vườn là: y + 3 (m).
Diện tích mới của mảnh vườn là: (x + 2)(y + 3) (m2)
Lúc này, diện tích tăng thêm 88 m2 nên ta có phương trình
(x + 2)(y + 3) – xy = 88 suy ra xy + 3x + 2y + 6 – xy = 88 hay 3x + 2y = 82 (2).
Từ (1) và (2) ta có hệ phương trình .
Bài 10. Chiều dài và chiều rộng ban đầu của mảnh vườn đó là:
A. x = 18, y = 14.
B. x = 24, y = 8.
C. x = 14, y = 18.
D. x = 8, y = 24.
Hướng dẫn giải
Đáp án đúng là: A
• Thay x = 18, y = 14 vào hệ phương trình , ta được .
Do đó, x = 18, y = 14 là nghiệm của hệ phương trình.
• Thay x = 24, y = 8 vào hệ phương trình , ta được:
Do đó, x = 24, y = 8 không là nghiệm của hệ phương trình.
• Thay x = 14, y = 18 vào hệ phương trình , ta được: .
Do đó, x = 14, y = 18 không là nghiệm của hệ phương trình.
• Thay x = 8, y = 24 vào hệ phương trình , ta được:
Do đó, x = 8, y = 24 không là nghiệm của hệ phương trình.
Vậy chiều dài và chiều rộng ban đầu của mảnh vườn lần lượt là 18 m và 14 m.
Xem thêm các dạng bài tập Toán 9 hay, chi tiết khác:
- Một số bài toán liên quan đến phương trình và hệ phương trình bậc nhất hai ẩn
- Giải hệ phương trình bậc nhất hai ẩn bằng phương pháp thế
- Giải hệ phương trình bậc nhất hai ẩn bằng phương pháp cộng đại số
- Xác định giá trị tham số để đường thẳng đi qua hai điểm cho trước
- Xác định hệ số trong phản ứng hóa học đã được cân bằng
Tủ sách VIETJACK luyện thi vào 10 cho 2k10 (2025):
Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.
Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:Loạt bài Chuyên đề: Lý thuyết - Bài tập Toán lớp 9 Đại số và Hình học có đáp án có đầy đủ Lý thuyết và các dạng bài được biên soạn bám sát nội dung chương trình sgk Đại số 9 và Hình học 9.
Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.
- Giải Tiếng Anh 9 Global Success
- Giải sgk Tiếng Anh 9 Smart World
- Giải sgk Tiếng Anh 9 Friends plus
- Lớp 9 Kết nối tri thức
- Soạn văn 9 (hay nhất) - KNTT
- Soạn văn 9 (ngắn nhất) - KNTT
- Giải sgk Toán 9 - KNTT
- Giải sgk Khoa học tự nhiên 9 - KNTT
- Giải sgk Lịch Sử 9 - KNTT
- Giải sgk Địa Lí 9 - KNTT
- Giải sgk Giáo dục công dân 9 - KNTT
- Giải sgk Tin học 9 - KNTT
- Giải sgk Công nghệ 9 - KNTT
- Giải sgk Hoạt động trải nghiệm 9 - KNTT
- Giải sgk Âm nhạc 9 - KNTT
- Giải sgk Mĩ thuật 9 - KNTT
- Lớp 9 Chân trời sáng tạo
- Soạn văn 9 (hay nhất) - CTST
- Soạn văn 9 (ngắn nhất) - CTST
- Giải sgk Toán 9 - CTST
- Giải sgk Khoa học tự nhiên 9 - CTST
- Giải sgk Lịch Sử 9 - CTST
- Giải sgk Địa Lí 9 - CTST
- Giải sgk Giáo dục công dân 9 - CTST
- Giải sgk Tin học 9 - CTST
- Giải sgk Công nghệ 9 - CTST
- Giải sgk Hoạt động trải nghiệm 9 - CTST
- Giải sgk Âm nhạc 9 - CTST
- Giải sgk Mĩ thuật 9 - CTST
- Lớp 9 Cánh diều
- Soạn văn 9 Cánh diều (hay nhất)
- Soạn văn 9 Cánh diều (ngắn nhất)
- Giải sgk Toán 9 - Cánh diều
- Giải sgk Khoa học tự nhiên 9 - Cánh diều
- Giải sgk Lịch Sử 9 - Cánh diều
- Giải sgk Địa Lí 9 - Cánh diều
- Giải sgk Giáo dục công dân 9 - Cánh diều
- Giải sgk Tin học 9 - Cánh diều
- Giải sgk Công nghệ 9 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 9 - Cánh diều
- Giải sgk Âm nhạc 9 - Cánh diều
- Giải sgk Mĩ thuật 9 - Cánh diều