28 bài tập trắc nghiệm Cực trị của hàm số (có đáp án - phần 2)



Với 28 bài tập & câu hỏi trắc nghiệm Cực trị của hàm số lớp 12 có đáp án và lời giải chi tiết đầy đủ các mức độ nhận biết, thông hiểu, vận dụng sẽ giúp học sinh ôn trắc nghiệm Toán 12.

28 bài tập trắc nghiệm Cực trị của hàm số (có đáp án - phần 2)

(199k) Xem Khóa học Toán 12 KNTTXem Khóa học Toán 12 CDXem Khóa học Toán 12 CTST

Câu 15: Cho hàm số y = x4 - 2x2 - 2 (2). Khẳng định nào sau đây là đúng?

Quảng cáo

A. Hàm số (2) đạt cực đại tại y = -2

B. Hàm số (2) đạt giá trị cực đại tại y = -2

C. Đồ thị hàm số (2) có điểm cực đại là y = -2

D. Hàm số (2) có giá trị cực đại là y = -2

Ta có: y' = 4x3 - 4x, y'' = 12x2 - 4

Bài tập trắc nghiệm Toán 12 (có lời giải)

y''(-1) = 8 > 0; y''(1) = 8 > 0

Do đó hàm số đạt cực đại tại x = 0 và có giá trị cực đại là y(0)=-2

Câu 16: Hàm số y = cosx đạt cực trị tại những điểm

Bài tập trắc nghiệm Toán 12 (có lời giải)

y' = -sinx; y'' = -cosx. y' = 0 <=> -sinx = 0 <=> x = kπ

y''(kπ) = ±1. Do đó hàm số đạt cực trị tại x = kπ

Câu 17: Với giá trị nào của m, hàm số y = x3 - 2x2 + mx - 1 không có cực trị?

Bài tập trắc nghiệm Toán 12 (có lời giải)

y' = 3x2 - 4x + m. Hàm số không có cực trị <=> y’=0 vô nghiệm hoặc có nghiệm kép <=> Δ' ≤ 0 <=> 22 - 3m ≤ 0 <=> m ≥ 4/3

Do đó hàm số không có cực trị khi m ≥ 4/3

Câu 18: Với giá trị nào của m, hàm số y = -mx4 + 2(m - 1)x2 + 1 - 2m có một cực trị

A.0 ≤ m ≤ 1     B. m > 1 hoặc m < 0     C. 0 < m < 1     D. 0 < m ≤ 1

Xét hàm số y = -mx4 +2(m - 1)x2 + 1 - 2m(1)

TH1: m = 0 (1) trở thành y = -2x2 + 1

Vậy với m = 0 hàm số luôn có một cực trị.

TH2: m ≠ 0. y' = -4mx3 + 4(m - 1)x

Bài tập trắc nghiệm Toán 12 (có lời giải)

Để hàm số (1) có một cực trị thì

Bài tập trắc nghiệm Toán 12 (có lời giải)

vô nghiệm hoặc có nghiệm kép bằng 0

Bài tập trắc nghiệm Toán 12 (có lời giải)

Kết hợp cả hai trường hợp ta có 0 ≤ m ≤ 1

Quảng cáo

Câu 19: Giá trị của m để hàm số y = x3 - 3mx2 + (m2 - 1)x + 2 đạt cực đại tại x = 2 là:

A. m = 1     B. m = 11     C. m = -1     D. Không tồn tại

y' = 3x2 - 6mx + m2 - 1; y'' = 6x - 6m

Hàm số đạt cực đại tại x = 2 khi

Bài tập trắc nghiệm Toán 12 (có lời giải)

Câu 20: Với giá trị nào của m, hàm số y = (x - m)3 - 3x đạt cực tiểu tại điểm có hoành độ x = 0?

A. m = 1    B. m = -1     C. m = 0     D. Không tồn tại

Xét y = x3 - 3mx2 + (3m2 - 3)x - m2

Ta có: y' = 32 - 6mx + 3m2 - 3, y'' = 6x - 6m

Hàm số đạt cực tiểu tại điểm có hoành độ x = 0 khi

Bài tập trắc nghiệm Toán 12 (có lời giải)

Câu 21: Với giá trị nào của m, hàm số y = x3 + 2(m - 1)x2 + (m2 - 4m + 1)x + 2(m2 + 1) có hai điểm cực trị x1,x2 thỏa mãn

Bài tập trắc nghiệm Toán 12 (có lời giải)

A. m = 1/2    B. m = 2     C. m = 1/2 hoặc m = 2     D. Không tồn tại

Ta có y' = 3x2 + 4(m - 1)x + m2 - 4m + 1. Hàm số có hai cực trị

=> y' = 0 có hai nghiệm phân biệt <=> Δ' > 0 <=> 4(m - 1)2 - 3(m2 - 4m + 1) > 0

<=> m2 + 4m + 1 > 0

Bài tập trắc nghiệm Toán 12 (có lời giải)

Áp dụng Vi-ét cho phương trình y’ = 0 có hai nghiệm phân biệt x1, x2 ta có :

Bài tập trắc nghiệm Toán 12 (có lời giải)

Đối chiếu điều kiện (*) có m = 5 hoặc m = 1

Câu 22: Với giá trị nào của m, đồ thị hàm số y = x3 - 3mx2 + 3(m2 - 1)x - m 3 + m có điểm cực đại B, điểm cực tiểu C thỏa mãn OC = 3OB, với O là gốc tọa độ?

Ta có y' = 3x2 - 6mx + 3(m2 - 1).

Hàm số có hai cực trị => y' = 0 có hai nghiệm phân biệt <=> Δ' > 0 <=> (3m)2 - 3.3(m2 - 1) > 0 <=> 9 > 0 đúng với mọi m. Ta có điểm cực đại là B(m - 1; -2m + 2) và cực tiểu là C(m + 1; -2m - 2)

Bài tập trắc nghiệm Toán 12 (có lời giải)

Câu 23: Với giá trị nào của m, đồ thị hàm số y = x3 - 3mx2 + m có hai điểm cực trị B, C thẳng hàng với điểm A(-1;3)?

Quảng cáo

A. m = 0     B. m = 1     C. m = -3/2     D. m = -3/2 hoặc m = 1

y’= 3x2 - 6mx = 3x(x - 2m)

Hàm số có hai điểm cực trị => y’=0 có hai nghiệm phân biệt <=> m ≠ 0 (*)

Tọa độ hai điểm cực trị là B(0;m) và C(2m;-4m3 + m)

AB =(1;m – 3); AC =(2m+1; -4m3 + m-3)

A, B, C thẳng hàng

Bài tập trắc nghiệm Toán 12 (có lời giải)

Câu 24: Cho hàm số y = x3 - 3x2 - 6x + 8 (C). Phương trình đường thẳng đi qua hai điểm cực trị của đồ thị hàm số (C) là:

A. y = 6x - 6     B. y = -6x - 6     C. y = 6x + 6     D. y = -6x + 6

Cách 1: Ta có y’=3x2-6x-6 ; y”=6x - 6

Bài tập trắc nghiệm Toán 12 (có lời giải)

Do đó đồ thị hàm số có điểm cực trị là A(1 + √3; -6√3) và B(1 - √3; 6√3) .

Phương trình đường thẳng đi qua hai điểm cực trị là:

Bài tập trắc nghiệm Toán 12 (có lời giải)

Cách 2: Ta có:

Bài tập trắc nghiệm Toán 12 (có lời giải)

Gọi x1, x2 là nghiệm của phương trình y’(x)= 3x2-6x-6=0 . Khi đó ta có A(x1, y(x1)), BA(x2, y(x2)) là hai cực trị của đồ thị hàm số C với y'(x1) = y'(x2) = 0 .

Do đó ta có:

Bài tập trắc nghiệm Toán 12 (có lời giải)

Vậy A, B thuộc đường thẳng y= - 6x+6.

Câu 25: Cho hàm số y = x3 -3x2 - 9x + 4. Phương trình đường thẳng đi qua hai điểm cực trị của đồ thị hàm số trên là:

A. y = -8x + 1     B. y = x + 7     C. y = -x + 1     D. Không tồn tại

y' = 3x2 - 6x - 9, y'' = 6x - 6

Bài tập trắc nghiệm Toán 12 (có lời giải)

Do đồ thị hàm số có hai điểm cực trị là A(-1;9) và B(3;-23).

Phương trình đường thẳng đi qua hai điểm cực trị là:

Bài tập trắc nghiệm Toán 12 (có lời giải)

Câu 26: Với giá trị nào của m, đường thẳng đi qua hai điểm cực trị của đồ thị hàm số y = x3 - 3x2 + 3mx + 1 - m tạo với đường thẳng Δ: 3x + y - 8 = 0 một góc 45o ?

A. m = 0    B. m = 2    C.m = 3/4    D. m = 2 hoặc m = 3/4

Ta có y' = 3x2 - 6x + 3m. Hàm số có hai điểm cực trị <=> y’=0 có hai nghiệm phân biệt

<=> Δ' = 32 -3.3m > 0 <=> m < 1 (*)

Chia y cho y’ ta được:

Bài tập trắc nghiệm Toán 12 (có lời giải)

Giả sử x1, x2 là hai nghiệm phân biệt của y’=0

Phương trình đường thẳng đi qua hai điểm cực trị có dạng (d) : y= (2m-2)x+1

(d) có vectơ pháp tuyến là n1 = (2m - 2; -1)

(Δ) : 3x+y-8=0 có vectơ pháp tuyến là n2(3; 1)

Vì góc giữa đường thẳng (d) và (Δ) là 45o nên

Bài tập trắc nghiệm Toán 12 (có lời giải)

Đối chiếu điều kiện (*) có m = 3/4

Câu 27: Với giá trị nào của m, đồ thị hàm số y = x3 + 3x2 + m2x + m có hai điểm cực trị đối xứng qua đường thẳng:

Bài tập trắc nghiệm Toán 12 (có lời giải)
Quảng cáo

A. m = 0    B. m = 1     C. m = -1    D. Không tồn tại

y' = 3x2 + 6x + m2 . Hàm số có hai điểm cực trị => y’=0 có hai nghiệm phân biệt <=> Δ' = 32 - 3.m2 > 0 <=> -√3 < m < √3

Chia y cho y’ ta được:

Bài tập trắc nghiệm Toán 12 (có lời giải)

Giả sử x1, x2 là hai nghiệm phân biệt của y’=0.

Phương trình đường thẳng đi qua hai điểm cực trị có dạng

Bài tập trắc nghiệm Toán 12 (có lời giải)

(d) có vectơ pháp tuyến là

Bài tập trắc nghiệm Toán 12 (có lời giải) Bài tập trắc nghiệm Toán 12 (có lời giải)

Vì hai điểm cực trị đối xứng với nhau qua (Δ) nên (d) ⊥ (Δ)

Bài tập trắc nghiệm Toán 12 (có lời giải)

Thử lại khi m=0 ta có: y = x3 + 3x2; y' = 3x2 + 6x; y'' = 6x + 6

Bài tập trắc nghiệm Toán 12 (có lời giải)

y''(0) = 6 > 0; y''(-2) = -6 < 0

Tọa độ hai điểm cực trị của đồ thị hàm số là O(0;0), A(-2;4)

Trung điểm của OA là I(-1;2).

Ta thấy I(-1,2) không thuộc đường thẳng (Δ) . Vậy không tồn tại m.

Câu 28: Với giá trị nào của m, đồ thị hàm số y = x4 - 2mx2 + m 4 + 2m có ba điểm cực trị tạo thành tam giác đều?

A. m = 0     B. m = ∛3    C.-∛3     D. Không tồn tại

y' = 4x3 - 4mx = 4x(x2 - m)

Hàm số có ba điểm cực trị => y’=0 có ba nghiệm phân biệt <=> m > 0.

Khi đó đồ thị hàm số có ba điểm cực trị là :

A(0; m4 + 2m), B(-√m; m4 - m2 + 2m), C(√m; m4 - m2 + 2m)

ΔABC đều khi AB=AC

Bài tập trắc nghiệm Toán 12 (có lời giải)

Đối chiếu với điều kiện tồn tại cực trị ta có m = ∛3 là giá trị cần tìm.

(199k) Xem Khóa học Toán 12 KNTTXem Khóa học Toán 12 CDXem Khóa học Toán 12 CTST

Xem thêm bài tập trắc nghiệm Toán lớp 12 có đáp án hay khác:

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.




Giải bài tập lớp 12 sách mới các môn học