Toán 9 Bài 6: Hệ thức Vi-ét và ứng dụng
Giải sgk Toán 9 Bài 6: Hệ thức Vi-ét và ứng dụng
Video Giải bài tập Toán 9 Bài 6: Hệ thức Vi-ét và ứng dụng
Trả lời câu hỏi Toán 9 Tập 2 Bài 6 trang 50 - Video giải tại 0:54 : Hãy tính x1 + x2, x1x2.
Lời giải
a) Xác định các hệ số a, b, c rồi tính a + b + c.
b) Chứng tỏ rằng x1 = 1 là một nghiệm của phương trình.
c) Dùng định lý Vi-ét để tìm x2.
Lời giải
a) a = 2; b = -5; c = 3
⇒ a + b + c = 2 - 5 + 3 = 0
b) Thay x = 1 vào phương trình ta được:
2.12 - 5.1 + 3 = 0
Vậy x = 1 là một nghiệm của phương trình
c) Theo định lí Vi-et ta có:
x1.x2 = c/a = 3/2 ⇒ x2 = 3/2
a) Xác định các hệ số a, b, c rồi tính a - b + c.
b) Chứng tỏ rằng x1 = -1 là một nghiệm của phương trình.
c) Tìm nghiệm x2.
Lời giải
a) a = 3; b = 7; c = 4
⇒ a + b + c = 3 - 7 + 4 = 0
b) Thay x = -1 vào phương trình ta được:
3.(-1)2 + 7.(-1) + 4 = 0
Vậy x = - 1 là một nghiệm của phương trình
c) Theo định lí Vi-et ta có:
x1.x2 = c/a = 4/3 ⇒ x2 = 4/3:(-1) = -4/3
a) -5x2 + 3x + 2 = 0;
b) 2004x2 + 2005x + 1 = 0.
Lời giải
a) -5x2 + 3x + 2 = 0;
Nhận thấy phương trình có a + b + c = 0 nên phương trình có 2 nghiệm
x1 = 1; x2 = c/a = (-2)/5
b) 2004x2 + 2005x + 1 = 0
Nhận thấy phương trình có a - b + c = 0 nên phương trình có 2 nghiệm
x1 = -1; x2 = -c/a = (-1)/2004
Lời giải
Hai số cần tìm là nghiệm của phương trình x2 - x + 5 = 0
Δ = b2 - 4ac = (-1)2 - 4.1.5 = -19 < 0
⇒ phương trình vô nghiêm
Vậy không tồn tại 2 số có tổng bằng 1 và tích bằng 5
a) 2x2 – 17x + 1 = 0;
Δ = …; x1 + x2 = …; x1.x2 = …;
b) 5x2 – x – 35 = 0;
Δ = …; x1 + x2 = …; x1.x2 = …;
c) 8x2 – x + 1 = 0 ;
Δ = …; x1 + x2 = …; x1.x2 = …;
d) 25x2 + 10x + 1 = 0 ;
Δ = …; x1 + x2 = …; x1.x2 = …;
Lời giải
a) 2x2 – 17x + 1 = 0
Có a = 2; b = -17; c = 1
Δ = b2 – 4ac = (-17)2 – 4.2.1 = 281 > 0.
Theo hệ thức Vi-et: phương trình có hai nghiệm x1; x2 thỏa mãn:
x1 + x2 = -b/a = 17/2
x1.x2 = c/a = 1/2.
b) 5x2 – x – 35 = 0
Có a = 5 ; b = -1 ; c = -35 ;
Δ = b2 – 4ac = (-1)2 – 4.5.(-35) = 701 > 0
Theo hệ thức Vi-et, phương trình có hai nghiệm x1; x2 thỏa mãn:
x1 + x2 = -b/a = 1/5
x1.x2 = c/a = -35/5 = -7.
c) 8x2 – x + 1 = 0
Có a = 8 ; b = -1 ; c = 1
Δ = b2 – 4ac = (-1)2 – 4.8.1 = -31 < 0
Phương trình vô nghiệm nên không tồn tại x1 ; x2.
d) 25x2 + 10x + 1 = 0
Có a = 25 ; b = 10 ; c = 1
Δ = b2 – 4ac = 102 – 4.25.1 = 0
Khi đó theo hệ thức Vi-et có:
x1 + x2 = -b/a = -10/25 = -2/5
x1.x2 = c/a = 1/25.
a) 35x2 – 37x + 2 = 0;
b) 7x2 + 500x – 507 = 0;
c) x2 – 49x – 50 = 0;
d) 4321x2 + 21x – 4300 = 0.
Lời giải
a) Phương trình 35x2 – 37x + 2 = 0
Có a = 35; b = -37; c = 2 ⇒ a + b + c = 0
⇒ Phương trình có nghiệm x1 = 1; x2 = c/a = 2/35.
b) Phương trình 7x2 + 500x – 507 = 0
Có a = 7; b = 500; c = -507 ⇒ a + b + c = 7 + 500 – 507 = 0
⇒ Phương trình có nghiệm x1 = 1; x2 = c/a = -507/7.
c) Phương trình x2 – 49x – 50 = 0
Có a = 1; b = -49; c = -50 ⇒ a – b + c = 1 – (-49) – 50 = 0
⇒ Phương trình có nghiệm x1 = -1; x2 = -c/a = 50.
d) Phương trình 4321x2 + 21x – 4300 = 0
Có a = 4321; b = 21; c = -4300 ⇒ a – b + c = 4321 – 21 – 4300 = 0
⇒ Phương trình có nghiệm x1 = -1; x2 = -c/a = 4300/4321.
a) x2 – 7x + 12 = 0;
b) x2 + 7x + 12 = 0.
Lời giải
a) x2 – 7x + 12 = 0
Có a = 1; b = -7; c = 12
⇒ Δ = b2 – 4ac = (-7)2 – 4.1.12 = 1 > 0
⇒ Phương trình có hai nghiệm phân biệt x1; x2 thỏa mãn:
Vậy dễ dàng nhận thấy phương trình có hai nghiệm là 3 và 4.
b) x2 + 7x + 12 = 0
Có a = 1; b = 7; c = 12
⇒ Δ = b2 – 4ac = 72 – 4.1.12 = 1 > 0
⇒ Phương trình có hai nghiệm phân biệt x1; x2 thỏa mãn:
Vậy dễ dàng nhận thấy phương trình có hai nghiệm là -3 và -4.
a) u + v = 32 , uv = 231
b) u + v = -8, uv = -105
c) u + v = 2, uv = 9
Lời giải
a) S = 32; P = 231 ⇒ S2 – 4P = 322 – 4.231 = 100 > 0
⇒ Tồn tại u và v là hai nghiệm của phương trình: x2 – 32x + 231 = 0.
Ta có: Δ = (-32)2 – 4.231 = 100 > 0
⇒ PT có hai nghiệm:
Vậy u = 21 ; v = 11 hoặc u = 11 ; v = 21.
b) S = -8; P = -105 ⇒ S2 – 4P = (-8)2 – 4.(-105) = 484 > 0
⇒ u và v là hai nghiệm của phương trình: x2 + 8x – 105 = 0
Ta có: Δ’ = 42 – 1.(-105) = 121 > 0
Phương trình có hai nghiệm:
Vậy u = 7 ; v = -15 hoặc u = -15 ; v = 7.
c) S = 2 ; P = 9 ⇒ S2 – 4P = 22 – 4.9 = -32 < 0
⇒ Không tồn tại u và v thỏa mãn.
Xem thêm các bài Giải bài tập Toán lớp 9 hay và chi tiết khác:
- Luyện tập trang 54
- Bài 7: Phương trình quy về phương trình bậc hai
- Luyện tập trang 56-57
- Bài 8: Giải bài toán bằng cách lập phương trình
- Luyện tập trang 59-60
Tủ sách VIETJACK luyện thi vào 10 cho 2k10 (2025):
Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.
Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:Loạt bài Video Giải bài tập Toán lớp 9 hay, chi tiết của chúng tôi được các Thầy / Cô giáo biên soạn bám sát chương trình sách giáo khoa Toán 9 Tập 1, Tập 2 Đại số & Hình học.
Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.
- Giải Tiếng Anh 9 Global Success
- Giải sgk Tiếng Anh 9 Smart World
- Giải sgk Tiếng Anh 9 Friends plus
- Lớp 9 Kết nối tri thức
- Soạn văn 9 (hay nhất) - KNTT
- Soạn văn 9 (ngắn nhất) - KNTT
- Giải sgk Toán 9 - KNTT
- Giải sgk Khoa học tự nhiên 9 - KNTT
- Giải sgk Lịch Sử 9 - KNTT
- Giải sgk Địa Lí 9 - KNTT
- Giải sgk Giáo dục công dân 9 - KNTT
- Giải sgk Tin học 9 - KNTT
- Giải sgk Công nghệ 9 - KNTT
- Giải sgk Hoạt động trải nghiệm 9 - KNTT
- Giải sgk Âm nhạc 9 - KNTT
- Giải sgk Mĩ thuật 9 - KNTT
- Lớp 9 Chân trời sáng tạo
- Soạn văn 9 (hay nhất) - CTST
- Soạn văn 9 (ngắn nhất) - CTST
- Giải sgk Toán 9 - CTST
- Giải sgk Khoa học tự nhiên 9 - CTST
- Giải sgk Lịch Sử 9 - CTST
- Giải sgk Địa Lí 9 - CTST
- Giải sgk Giáo dục công dân 9 - CTST
- Giải sgk Tin học 9 - CTST
- Giải sgk Công nghệ 9 - CTST
- Giải sgk Hoạt động trải nghiệm 9 - CTST
- Giải sgk Âm nhạc 9 - CTST
- Giải sgk Mĩ thuật 9 - CTST
- Lớp 9 Cánh diều
- Soạn văn 9 Cánh diều (hay nhất)
- Soạn văn 9 Cánh diều (ngắn nhất)
- Giải sgk Toán 9 - Cánh diều
- Giải sgk Khoa học tự nhiên 9 - Cánh diều
- Giải sgk Lịch Sử 9 - Cánh diều
- Giải sgk Địa Lí 9 - Cánh diều
- Giải sgk Giáo dục công dân 9 - Cánh diều
- Giải sgk Tin học 9 - Cánh diều
- Giải sgk Công nghệ 9 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 9 - Cánh diều
- Giải sgk Âm nhạc 9 - Cánh diều
- Giải sgk Mĩ thuật 9 - Cánh diều