Sách bài tập Toán 9 Bài 3: Phương trình bậc hai một ẩn
Sách bài tập Toán 9 Bài 3: Phương trình bậc hai một ẩn
Bài 15 trang 51 Sách bài tập Toán 9 Tập 2: Giải các phương trình :
a. 7x2 – 5x = 0 b. -√2 x2 + 6x = 0
c. 3,4x2 + 8,2x = 0
Lời giải:
a. Ta có: 7x2 – 5x = 0 ⇔ x(7x – 5) = 0 ⇔ x = 0 hoặc 7x – 5 = 0
7x – 5 = 0 ⇔ x = 5/7 .
Vậy phương trình có hai nghiệm x1 = 0, x2= 5/7
b. Ta có: -√2 x2 + 6x = 0 ⇔ x(6 - √2 x) = 0
⇔ x = 0 hoặc 6 - √2 x = 0 ⇔ x = 0 hoặc x = 3√2
Vậy phương trình có hai nghiệm x1 = 0, x2 = 3√2
c. Ta có: 3,4x2 + 8,2x = 0 ⇔ x(3,4x + 8,2) = 0
⇔ x = 0 hoặc 3,4x + 8,2 = 0 ⇔ x = 0 hoặc x = -(8,2)/(3,4)
Vậy phương trình có hai nghiệm: x1 = 0, x2= -(4,1)/(1,7)
d.Ta có: -2/5.x2 - 7/3.x = 0 ⇔ 6x2 + 35x = 0 ⇔ x(6x + 35) = 0
⇔ x = 0 hoặc 6x + 35 = 0 ⇔ x = 0 hoặc x = -35/6 .
Vậy phương trình có hai nghiệm x1 = 0, x2 = -35/6
Bài 16 trang 52 Sách bài tập Toán 9 Tập 2: Giải các phương trình:
a. 5x2 – 20 = 0 b. -3x2 + 15 = 0
c. 1,2x2 – 0,192 = 0 d. 1172,5x2 + 42,18 = 0
Lời giải:
a.Ta có: 5x2 – 20 = 0 ⇔ 5x2= 20 ⇔ x2 = 4 ⇔ x = ±2
Vậy phương trình có hai nghiệm x1 = 2, x2 = -2
b.Ta có: -3x2 + 15 = 0 ⇔ -3x2 = -15 ⇔ x2 = 5 ⇔ x = ±√5
Vậy phương trình có hai nghiệm x1 = √5 , x2 = -√5
c.Ta có: 1,2x2 – 0,192 = 0 ⇔ 1,2x2 = 0,192 ⇔ x2 = 0,16 ⇔ x = ±0,4
Vậy phương trình có hai nghiệm x1= 0,4, x2 = -0,4
d.Ta có: x2 ≥ 0 ⇒ 1172,5x2 ≥ 0 ⇒ 1172,5x2 + 42,18 > 0
Vậy không có giá trị nào của x thỏa mãn phương trình nên phương trình vô nghiệm.
Bài 17 trang 52 Sách bài tập Toán 9 Tập 2: Giải các phương trình :
a. (x – 3)2 = 4 b. (1/2 - x)2– 3 = 0
c. (2x - √2 )2 – 8 = 0 d. (2,1x – 1,2)2– 0,25 = 0
Lời giải:
a.Ta có : (x – 3)2 = 4 ⇔ (x – 3)2 – 22 = 0
⇔ [(x – 3) + 2][(x – 3) – 2] = 0 ⇔ (x – 1)(x – 5) = 0
⇔ x – 1 = 0 hoặc x – 5 = 0 ⇔ x = 1 hoặc x = 5
Vậy phương trình có hai nghiệm x1 = 1, x2 = 5
b.Ta có: (1/2 - x)2 – 3 = 0 ⇔ (1/2 - x)2 – (√3 )2 = 0
⇔ [(1/2 - x) + √3 ][(1/2 - x) - √3 ] = 0
⇔ (1/2 + √3 – x)( 1/2 - √3 – x) = 0
⇔ 1/2 + √3 – x = 0 hoặc 1/2 - √3 – x = 0
⇔ x = 1/2 + √3 hoặc x = 1/2 - √3
Vậy phương trình có hai nghiệm x1 = 1/2 + √3 , x2 = 1/2 - √3
c.Ta có: (2x - √2 )2 – 8 = 0 ⇔ (2x - √2 )2 – (2√2 )2 = 0
⇔ [(2x - √2 ) + 2√2 ][(2x - √2 ) - 2√2 ] = 0
⇔ (2x - √2 + 2√2 )(2x - √2 - 2√2 ) = 0
⇔ (2x + √2 )(2x - 3√2 ) = 0
⇔ 2x + √2 = 0 hoặc 2x - 3√2 = 0
⇔ x = -√2/2 hoặc x = 3√2/2
Vậy phương trình có hai nghiệm x1 = -√2/2 hoặc x2 = 3√2/2
d.Ta có: (2,1x – 1,2)2 – 0,25 = 0 ⇔ (2,1x – 1,2)2 – (0,5)2 = 0
⇔ [(2,1x – 1,2) + 0,5][(2,1x – 1,2) – 0,5] = 0
⇔ (2,1x – 1,2 + 0,5)(2,1x -1,2 – 0,5) = 0
⇔ (2,1x – 0,7)(2,1x – 1,7) = 0
⇔ 2,1x – 0,7 = 0 hoặc 2,1x – 1,7 = 0
⇔ x = (0,7)/(2,1) hoặc x = (1,7)/(2,1) ⇔ x = 1/3 hoặc x = 17/21
Vậy phương trình có hai nghiệm x1 = 1/3 hoặc x2 = 17/21
Bài 18 trang 52 Sách bài tập Toán 9 Tập 2: Giải các phương trình sau bằng cách biến đổi chúng thành những phương trình với vế trái là một bình phương còn vế phải là một hằng số.
a. x2 – 6x + 5 = 0 b. x2 – 3x – 7 = 0
c. 3x2 – 12x + 1 = 0 d. 3x2 – 6x + 5 = 0
Lời giải:
a. Ta có : x2 – 6x + 5 = 0 ⇔ x2 – 2.3x + 5 + 4 = 4
⇔ x2 – 2.3x + 9 = 4 ⇔ (x – 3)2 = 22
⇔ x – 3 = ±2 ⇔ x – 3 = 2 hoặc x – 3 = -2
⇔ x = 1 hoặc x = 5
Vậy phương trình có hai nghiệm x1 = 1, x2 = 5
d.Ta có : 3x2 – 6x + 5 = 0 ⇔ x2- 2x + 5/3 = 0
⇔ x2 – 2x + 5/3 + 1 = 1 ⇔ x2 – 2x + 1 = 1 - 5/3
⇔ (x – 1)2 = -2/3
Ta thấy (x – 1)2≥ 0 và -2/3 < 0
Vậy phương trình vô nghiệm.
Bài 19 trang 52 Sách bài tập Toán 9 Tập 2: Nhận thấy rằng phương trình tích (x + 2)(x – 3) = 0, hay phương trình bậc hai x2 – x – 6 = 0, có hai nghiệm là x1 = -2, x2 = 3. Tương tự, hãy lập những phương trình bậc hai mà nghiệm mỗi phương trình là một trong những cặp số sau :
a. x1 = 2, x2 = 5 b. x1 = -1/2 , x2 = 3
c. x1 = 0,1, x2 = 0,2 d. x1 = 1 - √2 , x2 = 1 + √2
Lời giải:
a. Hai số 2 và 5 là nghiệm của phương trình :
(x – 2)(x – 5) = 0 ⇔ x2 – 7x + 10 = 0
b. Hai số -1/2 và 3 là nghiệm của phương trình :
(x + 1/2 )(x – 3) = 0 ⇔ 2x2 – 5x – 3 = 0
c. Hai số 0,1 và 0,2 là nghiệm của phương trình :
(x – 0,1)(x – 0,2) = 0 ⇔ x2 – 0,3x + 0,02 = 0
d. Hai số 1 - √2 và 1 + √2 là nghiệm của phương trình :
[x – (1 - √2 )][x – (1 + √2 )] = 0
⇔ x2 – (1 + √2 )x – (1 - √2 )x + (1 - √2 )(1 + √2 ) = 0
⇔ x2 – 2x – 1 = 0
Bài 1 trang 52 Sách bài tập Toán 9 Tập 2: Đưa các phương trình sau về dạng ax2 + bx + c = 0 và xác định các hệ số a, b, c:
a) 4 x2 + 2x = 5x - 7
b) 5x - 3 + √5.x2 = 3x - 4 + x2
c) m x2 - 3x + 5 = x2 - mx
d) x + m2x2 + m = x2 + mx + m + 2
Lời giải:
a) 4x2 + 2x = 5x - 7 ⇔ 4x2 - 3x + 7 = 0 có a = 4, b = -3, c = 7
b)
c) m x2 - 3x + 5 = x2 - mx ⇔ ⇔ (m - 1)x2 - (3 - m)x + 5 = 0
m - 1 ≠)
nó là phương trình bậc hai có a = m – 1; b = - (3 – m ); c = 5
d)
Bài 2 trang 52 Sách bài tập Toán 9 Tập 2: Giải các phương trình sau bằng cách biến đổi chúng thành những phương trình với vế trái là một bình phương còn vế phải là một hằng số:
Lời giải:
Bài 3 trang 53 Sách bài tập Toán 9 Tập 2: Tìm b, c để phương trình x2 + bx + c = 0 có hai nghiệm là những số dưới đây:
Lời giải:
Bài 4 trang 53 Sách bài tập Toán 9 Tập 2: Tìm a, b, c để phương trình ax2 + bx + c = 0 có hai nghiệm là x1 = -2 và x2 = 3.
Có thể tìm được bao nhiêu bộ ba số a, b, c thỏa mãn yêu cầu bài toán?
Lời giải:
x = -2 là nghiệm của phương trình: ax2 + bx + c = 0, ta có:
4a - 2b + c = 0
x = 3 là nghiệm của phương trình: ax2 + bx + c = 0 ta có:
9a + 3b + c = 0
Ba số a, b, c là nghiệm của hệ phương trình:
thì phương trình ax2 + bx + c = 0 có nghiệm x1 = -2; x2 = 3
Ví dụ: a = 2, b = -2, c = -12 ta có phương trình:
2x2 - 2x - 12 = 0
⇒ x2- x - 6 = 0
⇒ (x + 2)(x - 3) = 0
Có nghiệm: x1 = - 2;x2 = 3
Có vô số bộ ba a, b, c thỏa mãn yêu cầu bài toán.
Xem thêm Video Giải sách bài tập Toán lớp 9 (SBT Toán 9) hay và chi tiết khác:
- Bài 4: Công thức nghiệm của phương trình bậc hai
- Bài 5: Công thức nghiệm thu gọn
- Bài 6: Hệ thức Vi-ét và ứng dụng
- Bài 7: Phương trình quy về phương trình bậc hai
Xem thêm các loạt bài Để học tốt Toán lớp 9 hay khác:
- Giải bài tập Toán 9
- Chuyên đề Toán 9 (có đáp án - cực hay)
- Lý thuyết & 500 Bài tập Toán 9 (có đáp án)
- Các dạng bài tập Toán 9 cực hay
- Đề thi Toán 9
- Đề thi vào 10 môn Toán
Tủ sách VIETJACK luyện thi vào 10 cho 2k10 (2025):
Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.
Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:Loạt bài Giải sách bài tập Toán 9 hay, chi tiết của chúng tôi được biên soạn bám sát nội dung Sách bài tập Toán 9 Tập 1 & Tập 2.
Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.
- Giải Tiếng Anh 9 Global Success
- Giải sgk Tiếng Anh 9 Smart World
- Giải sgk Tiếng Anh 9 Friends plus
- Lớp 9 Kết nối tri thức
- Soạn văn 9 (hay nhất) - KNTT
- Soạn văn 9 (ngắn nhất) - KNTT
- Giải sgk Toán 9 - KNTT
- Giải sgk Khoa học tự nhiên 9 - KNTT
- Giải sgk Lịch Sử 9 - KNTT
- Giải sgk Địa Lí 9 - KNTT
- Giải sgk Giáo dục công dân 9 - KNTT
- Giải sgk Tin học 9 - KNTT
- Giải sgk Công nghệ 9 - KNTT
- Giải sgk Hoạt động trải nghiệm 9 - KNTT
- Giải sgk Âm nhạc 9 - KNTT
- Giải sgk Mĩ thuật 9 - KNTT
- Lớp 9 Chân trời sáng tạo
- Soạn văn 9 (hay nhất) - CTST
- Soạn văn 9 (ngắn nhất) - CTST
- Giải sgk Toán 9 - CTST
- Giải sgk Khoa học tự nhiên 9 - CTST
- Giải sgk Lịch Sử 9 - CTST
- Giải sgk Địa Lí 9 - CTST
- Giải sgk Giáo dục công dân 9 - CTST
- Giải sgk Tin học 9 - CTST
- Giải sgk Công nghệ 9 - CTST
- Giải sgk Hoạt động trải nghiệm 9 - CTST
- Giải sgk Âm nhạc 9 - CTST
- Giải sgk Mĩ thuật 9 - CTST
- Lớp 9 Cánh diều
- Soạn văn 9 Cánh diều (hay nhất)
- Soạn văn 9 Cánh diều (ngắn nhất)
- Giải sgk Toán 9 - Cánh diều
- Giải sgk Khoa học tự nhiên 9 - Cánh diều
- Giải sgk Lịch Sử 9 - Cánh diều
- Giải sgk Địa Lí 9 - Cánh diều
- Giải sgk Giáo dục công dân 9 - Cánh diều
- Giải sgk Tin học 9 - Cánh diều
- Giải sgk Công nghệ 9 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 9 - Cánh diều
- Giải sgk Âm nhạc 9 - Cánh diều
- Giải sgk Mĩ thuật 9 - Cánh diều