Giải bài 8 trang 44 sgk Giải tích 12



Bài 5: Khảo sát sự biến thiên và vẽ đồ thị của hàm số

Bài 8 (trang 44 SGK Giải tích 12): Cho hàm số:

y = x3 + (m + 3)x2 + 1 - m (m là tham số)

có đồ thị (Cm).

Quảng cáo

a) Xác định m để hàm số có điểm cực đại là x = -1.

b) Xác định m để đồ thị (Cm) cắt trục hoành tại x = -2.

Lời giải:

a) Xét hàm số y = x3 + (m + 3)x2 + 1 – m.

+ TXĐ : D = R.

+ y’ = 3x2 + 2(m + 3).x

⇒ y’’ = 6x + 2(m + 3).

+ Hàm số có điểm cực đại là x = -1

Giải bài 8 trang 44 sgk Giải tích 12 | Để học tốt Toán 12
Quảng cáo

Vậy với Giải bài 8 trang 44 sgk Giải tích 12 | Để học tốt Toán 12 thì hàm số có điểm cực đại là x = -1.

b) Đồ thị (Cm) cắt trục hoành tại x = -2

⇔ y(-2) = 0

⇔ (-2)3 + (m + 3)(-2)2 + 1 - m = 0

⇔ -8 + 4(m + 3) + 1 - m = 0

⇔ 3m + 5 = 0

⇔ m = 53

Vậy m = 53 thì đồ thị (Cm) cắt trục hoành tại x = - 2.

Kiến thức áp dụng

+ Hàm số y = f(x) có đạo hàm cấp hai trong khoảng K, khi đó, với y0 ∈ K ta có:

Nếu f’(y0) = 0 và f’’(y0) < 0 thì y0 là điểm cực đại.

Quảng cáo

Tham khảo lời giải các bài tập Toán 12 bài 5 khác:

Các bài giải Toán 12 Giải tích Tập 1 Chương 1 khác:

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


khao-sat-su-bien-thien-va-ve-do-thi-cua-ham-so.jsp


Giải bài tập lớp 12 sách mới các môn học