Giải bài 8 trang 44 sgk Giải tích 12



Bài 5: Khảo sát sự biến thiên và vẽ đồ thị của hàm số

Bài 8 (trang 44 SGK Giải tích 12): Cho hàm số:

y = x3 + (m + 3)x2 + 1 - m (m là tham số)

có đồ thị (Cm).

Quảng cáo

a) Xác định m để hàm số có điểm cực đại là x = -1.

b) Xác định m để đồ thị (Cm) cắt trục hoành tại x = -2.

Lời giải:

a) Xét hàm số y = x3 + (m + 3)x2 + 1 – m.

+ TXĐ : D = R.

+ y’ = 3x2 + 2(m + 3).x

⇒ y’’ = 6x + 2(m + 3).

+ Hàm số có điểm cực đại là x = -1

Giải bài 8 trang 44 sgk Giải tích 12 | Để học tốt Toán 12
Quảng cáo

Vậy với Giải bài 8 trang 44 sgk Giải tích 12 | Để học tốt Toán 12 thì hàm số có điểm cực đại là x = -1.

b) Đồ thị (Cm) cắt trục hoành tại x = -2

⇔ y(-2) = 0

⇔ (-2)3 + (m + 3)(-2)2 + 1 - m = 0

⇔ -8 + 4(m + 3) + 1 - m = 0

⇔ 3m + 5 = 0

⇔ m = 53

Vậy m = 53 thì đồ thị (Cm) cắt trục hoành tại x = - 2.

Kiến thức áp dụng

+ Hàm số y = f(x) có đạo hàm cấp hai trong khoảng K, khi đó, với y0 ∈ K ta có:

Nếu f’(y0) = 0 và f’’(y0) < 0 thì y0 là điểm cực đại.

Quảng cáo

Tham khảo lời giải các bài tập Toán 12 bài 5 khác:

Các bài giải Toán 12 Giải tích Tập 1 Chương 1 khác:

ĐỀ THI, GIÁO ÁN, GÓI THI ONLINE DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 12

Bộ giáo án, đề thi, bài giảng powerpoint, khóa học dành cho các thầy cô và học sinh lớp 12, đẩy đủ các bộ sách cánh diều, kết nối tri thức, chân trời sáng tạo tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official


khao-sat-su-bien-thien-va-ve-do-thi-cua-ham-so.jsp


Giải bài tập lớp 12 sách mới các môn học
Tài liệu giáo viên