Toán 12 trang 43 (sách mới) | Chân trời sáng tạo, Kết nối tri thức, Cánh diều
Lời giải Toán 12 trang 43 sách mới Chân trời sáng tạo, Kết nối tri thức, Cánh diều hay, chi tiết sẽ giúp học sinh lớp 12 biết cách làm bài tập Toán 12 trang 43.
Toán 12 trang 43 (sách mới) | Chân trời sáng tạo, Kết nối tri thức, Cánh diều
- Toán lớp 12 trang 43 Tập 1 (sách mới):
- Toán lớp 12 trang 43 Tập 2 (sách mới):
Lưu trữ: Giải Toán 12 trang 43 (sách cũ)
Bài 2 (trang 43 SGK Giải tích 12): Khảo sát sự biến thiên và vẽ đồ thị của các hàm số bậc bốn sau:
Lời giải:
a) Hàm số y = -x4 + 8x2 – 1.
1) Tập xác định: D = ℝ
2) Sự biến thiên:
+ Chiều biến thiên:
y' = -4x3 + 16x = -4x(x2 - 4)
y' = 0 ⇔ -4x(x2 - 4) = 0 ⇔ x = 0 ; x = ±2
Trên khoảng (-∞; -2) và (0; 2), y’ > 0 nên hàm số đồng biến.
Trên các khoảng (-2; 0) và (2; +∞), y’ < 0 nên hàm số nghịch biến.
+ Cực trị :
Hàm số đạt cực đại tại x = 2 và x = -2 ; yCĐ = 15
Hàm số đạt cực tiểu tại x = 0 ; yCT = -1.
+ Giới hạn:
+ Bảng biến thiên:
3) Đồ thị:
+ Hàm số đã cho là hàm số chẵn, vì:
y(-x) = -(-x)4 + 8(-x)2 - 1 = -x4 + 8x2 - 1 = y(x)
Suy ra đồ thị nhận Oy làm trục đối xứng.
+ Giao với Oy tại điểm (0; -1) (vì y(0) = -1).
+ Đồ thị hàm số đi qua (-3; -10) và (3; - 10).
b) Hàm số y = x4 – 2x2 + 2.
1) Tập xác định: D = ℝ
2) Sự biến thiên:
+ Chiều biến thiên:
y' = 4x3 - 4x = 4x(x2 - 1)
y' = 0 ⇔ 4x(x2 - 1) = 0 ⇔ x = 0 ; x = ±1.
+ Giới hạn:
+ Bảng biến thiên:
Kết luận :
Hàm số đồng biến trên khoảng (-1; 0) và (1; +∞).
Hàm số nghịch biến trên các khoảng (-∞; -1) và (0; 1).
Đồ thị hàm số có hai điểm cực tiểu là: (-1; 1) và (1; 1).
Đồ thị hàm số có điểm cực đại là: (0; 2)
3) Đồ thị:
+ Hàm số chẵn nên đồ thị hàm số nhận trục Oy là trục đối xứng.
+ Đồ thị hàm số cắt trục tung tại (0; 2).
+ Đồ thị hàm số đi qua (-1; 1) và (1; 1).
+ Đồ thị hàm số:
c) Hàm số
1) Tập xác định: D = ℝ
2) Sự biến thiên:
+ y' = 2x3 + 2x = 2x(x2 + 1)
y' = 0 ⇔ 2x(x2 + 1) = 0 ⇔ x = 0
+ Giới hạn:
+ Bảng biến thiên:
Kết luận: Hàm số đồng biến trên khoảng (0; +∞).
Hàm số nghịch biến trên các khoảng (-∞; 0).
Đồ thị hàm số có điểm cực đại là: (0; ).
3) Đồ thị:
+ Hàm số chẵn nên nhận trục Oy là trục đối xứng.
+ Hàm số cắt trục hoành tại điểm (-1; 0) và (1; 0).
+ Hàm số cắt trục tung tại điểm
d) Hàm số y = -2x2 – x4 + 3.
1) Tập xác định: D = ℝ
2) Sự biến thiên:
+ Chiều biến thiên:
y' = -4x - 4x3 = -4x(1 + x2)
y' = 0 ⇔ -4x(1 + x2) = 0 ⇔ x = 0
+ Giới hạn:
+ Bảng biến thiên:
Kết luận: Hàm số đồng biến trên khoảng (-∞; 0).
Hàm số nghịch biến trên các khoảng (0; +∞).
Đồ thị hàm số có điểm cực đại là: (0; 3).
3) Đồ thị:
+ Hàm số là hàm số chẵn nên nhận trục Oy là trục đối xứng.
+ Hàm số cắt trục Ox tại (-1; 0) và (1; 0).
+ Hàm số cắt trục Oy tại (0; 3).
Kiến thức áp dụng
Các bước khảo sát hàm số và vẽ đồ thị:
1, Tìm tập xác định.
2, Khảo sát sự biến thiên
+ Tính y’
⇒ Chiều biến thiên của hàm số.
+ Tìm cực trị.
+ Tính các giới hạn
Từ đó suy ra Bảng biến thiên.
3, Vẽ đồ thị hàm số.
Tham khảo lời giải các bài tập Toán 12 bài 5 khác:
Trả lời câu hỏi Toán 12 Giải tích Bài 5 trang 32 : Khảo sát sự biến thiên và vẽ đồ ....
Trả lời câu hỏi Toán 12 Giải tích Bài 5 trang 33 : Khảo sát sự biến thiên và vẽ đồ thị....
Trả lời câu hỏi Toán 12 Giải tích Bài 5 trang 35 : Khảo sát sự biến thiên và vẽ đồ thị....
Trả lời câu hỏi Toán 12 Giải tích Bài 5 trang 36 : Khảo sát sự biến thiên và vẽ đồ....
Trả lời câu hỏi Toán 12 Giải tích Bài 5 trang 38 : Lấy một ví dụ về hàm số dạng....
Trả lời câu hỏi Toán 12 Giải tích Bài 5 trang 42 : Tìm tọa độ giao điểm của đồ thị....
Bài 1 (trang 43 SGK Giải tích 12): Khảo sát sự biến thiên và vẽ đồ thị...
Bài 2 (trang 43 SGK Giải tích 12): Khảo sát tự biến thiên và vẽ đồ thị của ...
Bài 3 (trang 43 SGK Giải tích 12): Khảo sát sự biến thiên và vẽ đồ thị...
Bài 4 (trang 43 SGK Giải tích 12): Tìm nghiệm của các phương trình sau:...
Bài 5 (trang 43 SGK Giải tích 12): Khảo sát sự biến thiên và vẽ đồ thị (C) ...
Bài 6 (trang 43 SGK Giải tích 12): Cho hàm số...
Bài 7 (trang 43 SGK Giải tích 12): Cho hàm số: ...
Bài 8 (trang 43 SGK Giải tích 12): Cho hàm số: y=x3+(m+3) x2+1-m
Bài 9 (trang 43 SGK Giải tích 12): Cho hàm số : ...
Các bài giải Toán 12 Giải tích Tập 1 Chương 1 khác:
- Bài 5: Khảo sát sự biến thiên và vẽ đồ thị của hàm số
- Bài ôn tập chương I
- Bài 1: Lũy thừa
- Bài 2: Hàm số lũy thừa
- Bài 3: Lôgarit
Sách VietJack thi THPT quốc gia 2025 cho học sinh 2k7:
- Giải Tiếng Anh 12 Global Success
- Giải sgk Tiếng Anh 12 Smart World
- Giải sgk Tiếng Anh 12 Friends Global
- Lớp 12 Kết nối tri thức
- Soạn văn 12 (hay nhất) - KNTT
- Soạn văn 12 (ngắn nhất) - KNTT
- Giải sgk Toán 12 - KNTT
- Giải sgk Vật Lí 12 - KNTT
- Giải sgk Hóa học 12 - KNTT
- Giải sgk Sinh học 12 - KNTT
- Giải sgk Lịch Sử 12 - KNTT
- Giải sgk Địa Lí 12 - KNTT
- Giải sgk Giáo dục KTPL 12 - KNTT
- Giải sgk Tin học 12 - KNTT
- Giải sgk Công nghệ 12 - KNTT
- Giải sgk Hoạt động trải nghiệm 12 - KNTT
- Giải sgk Giáo dục quốc phòng 12 - KNTT
- Giải sgk Âm nhạc 12 - KNTT
- Giải sgk Mĩ thuật 12 - KNTT
- Lớp 12 Chân trời sáng tạo
- Soạn văn 12 (hay nhất) - CTST
- Soạn văn 12 (ngắn nhất) - CTST
- Giải sgk Toán 12 - CTST
- Giải sgk Vật Lí 12 - CTST
- Giải sgk Hóa học 12 - CTST
- Giải sgk Sinh học 12 - CTST
- Giải sgk Lịch Sử 12 - CTST
- Giải sgk Địa Lí 12 - CTST
- Giải sgk Giáo dục KTPL 12 - CTST
- Giải sgk Tin học 12 - CTST
- Giải sgk Hoạt động trải nghiệm 12 - CTST
- Giải sgk Âm nhạc 12 - CTST
- Lớp 12 Cánh diều
- Soạn văn 12 Cánh diều (hay nhất)
- Soạn văn 12 Cánh diều (ngắn nhất)
- Giải sgk Toán 12 Cánh diều
- Giải sgk Vật Lí 12 - Cánh diều
- Giải sgk Hóa học 12 - Cánh diều
- Giải sgk Sinh học 12 - Cánh diều
- Giải sgk Lịch Sử 12 - Cánh diều
- Giải sgk Địa Lí 12 - Cánh diều
- Giải sgk Giáo dục KTPL 12 - Cánh diều
- Giải sgk Tin học 12 - Cánh diều
- Giải sgk Công nghệ 12 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 12 - Cánh diều
- Giải sgk Giáo dục quốc phòng 12 - Cánh diều
- Giải sgk Âm nhạc 12 - Cánh diều