Giải Toán 7 trang 86 Tập 2 Kết nối tri thức, Chân trời sáng tạo, Cánh diều
Trọn bộ lời giải bài tập Toán 7 trang 86 Tập 2 Kết nối tri thức, Chân trời sáng tạo, Cánh diều sẽ giúp học sinh dễ dàng làm bài tập Toán lớp 7 trang 86. Bạn vào trang hoặc Xem lời giải để theo dõi chi tiết.
Giải Toán 7 trang 86 Tập 2 Kết nối tri thức, Chân trời sáng tạo, Cánh diều
- Toán lớp 7 trang 86 Tập 2 (sách mới):
- Toán lớp 7 trang 86 Tập 1 (sách mới):
Lưu trữ: Giải Toán 7 trang 86 (sách cũ)
Video Câu hỏi ôn tập chương 3 trang 86-87 SGK Toán 7 tập 2 - Cô Nguyễn Hà Nguyên (Giáo viên VietJack)
1. Cho tam giác ABC. Hãy viết kết luận của hai bài toán sau về quan hệ giữa góc và cạnh đối diện trong một tam giác.
Trả lời
2. Từ điểm A không thuộc đường thẳng d, kẻ đường vuông góc AH, các đường xiên AB, AC đến đường thẳng d. Hãy điền dấu (>, <) vào các chỗ trống (...) dưới đây cho đúng:
a) AB ... AH; AC ... AH.
b) Nếu HB ... HC thì AB ... AC.
c) Nếu AB ... AC thì HB ... HC.
Trả lời
a) AB > AH; AC > AH.
b) Nếu HB > HC thì AB > AC.
hoặc có thể HB < HC thì AB < AC.
c) Nếu AB > AC thì HB > HC.
hoặc có thể AB < AC thì HB < HC.
3. Cho tam giác DEF. Hãy viết bất đẳng thức về quan hệ giữa các cạnh của tam giác này.
Trả lời
Với ΔDEF ta có các bất đẳng thức và quan hệ giữa các cạnh là:
DE < EF + DF
DF < EF + DE
EF < DE + DF
DF - EF < DE < DF + EF (với DF > EF)
4. Hãy ghép hai ý ở hai cột để được khẳng định đúng:
Trả lời
Ghép a-d' ; b –a', c-b', d-c'
Trong một tam giác
a - d' đường phân giác xuất phát từ đỉnh A - là đoạn thẳng có hai mút là đỉnh A và giao điểm của cạnh BC với tia phân giác của góc A.
b - a' đường trung trực ứng với cạnh BC - là đường vuông góc với cạnh BC tại trung điểm của nó.
c - b' đường cao xuất phát từ đỉnh A - là đoạn vuông góc kẻ từ A đến đường thẳng BC.
d - c' đường trung tuyến xuất phát từ đỉnh A - là đoạn thẳng nối A với trung điểm của cạnh BC.
5. Cũng với yêu cầu như ở câu 4. ...
Trả lời
Ghép a-b', b-a', c-d', d-c'
Trong một tam giác
a - b' trọng tâm - là điểm chung của ba đường trung tuyến
b - a' trực tâm - là điểm chung của ba đường cao
c - d' điểm (nằm trong tam giác) cách đều ba cạnh - là điểm chung của ba đường phân giác
d - c' điểm cách đều ba đỉnh - là điểm chung của ba đường trung trực
6. a) Hãy nêu tính chất trọng tâm của một tam giác; các cách xác định trọng tâm.
b) Bạn Nam nói: "Có thể vẽ được một tam giác có trọng tâm ở bên ngoài tam giác". Bạn Nam nói đúng hay sai? Tại sao?
Trả lời
a)- Trọng tâm của một tam giác có tính chất như sau:
"Trọng tâm cách đỉnh một khoảng bằng độ dài đường trung tuyến đi qua đỉnh đó."
- Các cách xác định trọng tâm:
+ Cách 1: Vẽ hai đường trung tuyến ứng với hai cạnh tùy ý, rồi xác định giao điểm của hai đường trung tuyến đó.
+ Cách 2: Vẽ một đường trung tuyến của tam giác. Chia độ dài đường trung tuyến thành ba phần bằng nhau rồi xác định một điểm cách đỉnh hai phần bằng nhau.
b) Không thể vẽ được một tam giác có trọng tâm ở bên ngoài tam giác vì đường trung tuyến qua một đỉnh của tam giác và trung điểm một cạnh trong tam giác nên đường trung tuyến phải nằm giữa hai cạnh của một tam giác tức nằm ở bên trong của một tam giác nên ba đường trung tuyến cắt nhau chỉ có thể nằm bên trong của tam giác.
7. Những tam giác có ít nhất một đường trung tuyến đồng thời là đường phân giác, đường trung trực, đường cao?
Trả lời
Tam giác có ít nhất một đường trung tuyến đồng thời là đường phân giác, đường trung trực, đường cao là tam giác cân, tam giác vuông cân, tam giác đều.
8. Những tam giác nào có ít nhất một đường trung tuyến đồng thời là trực tâm, điểm cách đều ba đỉnh, điểm (nằm trong tam giác) cách đều ba cạnh?
Trả lời
Tam giác có trọng tâm đồng thời là trực tâm, điểm cách đều ba đỉnh, điểm (nằm trong tam giác) cách đều ba cạnh là tam giác đều.
Các bài giải bài tập Toán 7 Bài ôn tập chương 3 phần hình học khác:
Lời giải bài tập lớp 7 sách mới:
- Giải bài tập Lớp 7 Kết nối tri thức
- Giải bài tập Lớp 7 Chân trời sáng tạo
- Giải bài tập Lớp 7 Cánh diều
Tủ sách VIETJACK shopee lớp 6-8 cho phụ huynh và giáo viên (cả 3 bộ sách):
Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.
Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:Loạt bài Giải bài tập Toán lớp 7 | Để học tốt Toán 7 của chúng tôi được biên soạn bám sát theo chương trình Sách giáo khoa Toán 7 (Tập 1 & Tập 2) và một phần dựa trên quyển sách Giải bài tập Toán 7 và Để học tốt Toán lớp 7.
Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.
- Giải Tiếng Anh 7 Global Success
- Giải Tiếng Anh 7 Friends plus
- Giải sgk Tiếng Anh 7 Smart World
- Giải Tiếng Anh 7 Explore English
- Lớp 7 - Kết nối tri thức
- Soạn văn 7 (hay nhất) - KNTT
- Soạn văn 7 (ngắn nhất) - KNTT
- Giải sgk Toán 7 - KNTT
- Giải sgk Khoa học tự nhiên 7 - KNTT
- Giải sgk Lịch Sử 7 - KNTT
- Giải sgk Địa Lí 7 - KNTT
- Giải sgk Giáo dục công dân 7 - KNTT
- Giải sgk Tin học 7 - KNTT
- Giải sgk Công nghệ 7 - KNTT
- Giải sgk Hoạt động trải nghiệm 7 - KNTT
- Giải sgk Âm nhạc 7 - KNTT
- Lớp 7 - Chân trời sáng tạo
- Soạn văn 7 (hay nhất) - CTST
- Soạn văn 7 (ngắn nhất) - CTST
- Giải sgk Toán 7 - CTST
- Giải sgk Khoa học tự nhiên 7 - CTST
- Giải sgk Lịch Sử 7 - CTST
- Giải sgk Địa Lí 7 - CTST
- Giải sgk Giáo dục công dân 7 - CTST
- Giải sgk Công nghệ 7 - CTST
- Giải sgk Tin học 7 - CTST
- Giải sgk Hoạt động trải nghiệm 7 - CTST
- Giải sgk Âm nhạc 7 - CTST
- Lớp 7 - Cánh diều
- Soạn văn 7 (hay nhất) - Cánh diều
- Soạn văn 7 (ngắn nhất) - Cánh diều
- Giải sgk Toán 7 - Cánh diều
- Giải sgk Khoa học tự nhiên 7 - Cánh diều
- Giải sgk Lịch Sử 7 - Cánh diều
- Giải sgk Địa Lí 7 - Cánh diều
- Giải sgk Giáo dục công dân 7 - Cánh diều
- Giải sgk Công nghệ 7 - Cánh diều
- Giải sgk Tin học 7 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 7 - Cánh diều
- Giải sgk Âm nhạc 7 - Cánh diều