Trong mặt phẳng toạ độ Oxy cho ba điểm

Sách bài tập Toán 10 Bài tập cuối chương 4 trang 66, 67, 68, 69, 70, 71

Bài 4.68 trang 71 sách bài tập Toán lớp 10 Tập 1: Trong mặt phẳng toạ độ Oxy cho ba điểm A(–2; 1), B(1; 4) và C(5; −2).

a) Chứng minh rằng A, B, C là ba đỉnh của một tam giác. Tìm toạ độ trọng tâm G của tam giác ABC.

b) Tìm toạ độ trực tâm H và tâm đường tròn ngoại tiếp I của tam giác ABC.

Quảng cáo

Lời giải:

Trong mặt phẳng toạ độ Oxy cho ba điểm

a) Với A(–2; 1), B(1; 4) và C(5; −2) ta có:

AB = (3; 3) và AC = (7; –3)

3733=1 nên hai vectơ ABAC không cùng phương

Do đó ba điểm A, B, C không thẳng hàng

Vậy A, B, C là ba đỉnh của một tam giác.

Vì G là trọng tâm của tam giác ABC nên ta có:

Trong mặt phẳng toạ độ Oxy cho ba điểm

Vậy tọa độ trọng tâm của tam giác ABC là: G43;1 .

b) *Tìm tọa độ trực tâm H của tam giác ABC:

Vì H là trực tâm của tam giác ABC nên AH BC và BH AC

Hay AH.BC=0BH.AC=0

Giả sử H(x; y) là tọa độ trực tâm tam giác ABC

Với A(–2; 1), B(1; 4), C(5; −2) và H(x; y) ta có:

Trong mặt phẳng toạ độ Oxy cho ba điểm

Trừ vế theo vế (2) cho (1) ta có: 5x = 2

x = 25

Thay x = 25 vào (1) ta được: 2.25 – 3y = –7

3y = 395

y = 135

H25;135.

Vậy tọa độ trực tâm của tam giác ABC là H25;135.

* Tìm tọa độ tâm I của đường tròn ngoại tiếp tam giác ABC:

Theo kết quả phần a) của Bài 4.15, trang 54, Sách Bài tập, Toán 10, tập một ta có: AH=2IM

với M là trung điểm của BC.

Giả sử I(a; b) là tọa độ tâm đường tròn ngoại tiếp tam giác ABC

Với A(–2; 1), B(1; 4), C(5; −2), H25;135 và I(a; b) ta có:

AH=125;85

Trong mặt phẳng toạ độ Oxy cho ba điểm

M(3; 1)

IM = (3 – a; 1 – b)

2IM = (6 – 2a; 2 – 2b)

Ta có AH=2IM

Trong mặt phẳng toạ độ Oxy cho ba điểm

Vậy tọa độ tâm đường tròn ngoại tiếp tam giác ABC là I95;15.

Quảng cáo


Xem thêm các bài giải sách bài tập Toán lớp 10 sách Kết nối tri thức hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 10 hay khác:

ĐỀ THI, GIÁO ÁN, SÁCH LUYỆN THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 10

Bộ giáo án, bài giảng powerpoint, đề thi, sách dành cho giáo viên và gia sư dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài hỗ trợ đăng ký : 084 283 45 85

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 10 Kết nối tri thức khác
Tài liệu giáo viên