Cách tìm ảnh của 1 đường thẳng qua phép tịnh tiến cực hay
Bài viết Cách tìm ảnh của 1 đường thẳng qua phép tịnh tiến với phương pháp giải chi tiết giúp học sinh ôn tập, biết cách làm bài tập Cách tìm ảnh của 1 đường thẳng qua phép tịnh tiến.
Cách tìm ảnh của 1 đường thẳng qua phép tịnh tiến cực hay
A. Phương pháp giải
+) Sử dụng tính chất: d' là ảnh của d qua phép thì d' song song hoặc trùng với d
Nếu: d: Ax + By + C = 0; d'//d ⇒ d': Ax + By + C' = 0 (C' ≠ C)
+) Sử dụng biểu thức tọa độ
+) Chú ý:
B. Ví dụ minh họa
Ví dụ 1: Trong mặt phẳng tọa độ Oxy, cho = (1;-3) và đường thẳng d có phương trình 2x - 3y + 5 = 0. Viết phương trình đường thẳng d' là ảnh của d qua phép tịnh tiến .
Hướng dẫn giải:
Cách 1. Sử dụng biểu thức tọa độ của phép tịnh tiến.
Lấy điểm M(x;y) tùy ý thuộc d, ta có 2x - 3y + 5 = 0 (*)
Cách 2. Sử dụng tính chất của phép tịnh tiến
Do d' = (d) nên d' song song hoặc trùng với d, vì vậy phương trình đường thẳng d' có dạng 2x - 3y + c = 0.(**)
Lấy điểm M(-1;1) ∈ d. Khi đó M' = (M) = (-1 + 1;1 - 3) = (0;-2).
Do M' ∈ d' ⇒ 2.0 - 3.(-2) + c = 0 ⇔ c = -6
Vậy ảnh của d là đường thẳng d': 2x - 3y - 6 = 0.
Cách 3. Để viết phương trình d' ta lấy hai điểm phân biệt M,N thuộc d, tìm tọa độ các ảnh M', N' tương ứng của chúng qua . Khi đó d' đi qua hai điểm M' và N'.
Cụ thể: Lấy M(-1;1), N(2;3) thuộc d, khi đó tọa độ các ảnh tương ứng là M'(0;-2), N'(3;0). Do d' đi qua hai điểm M', N' nên có phương trình
Ví dụ 2: Tìm PT đt d qua phép tịnh tiến theo : d biến thành d’, biết: d’: 2x + 3y – 1 = 0 với = (-2;-1)
Hướng dẫn giải:
* Cách 1: Gọi (d) = d'. Khi đó d // d’ nên PT đt d có dạng: 2x + 3y + C = 0
Chọn A’(2;-1) ∈ d’. Khi đó: (A) = A' ⇒ A(4; 0) ∈ d nên 8 + 0 + C = 0 ⇔ C = -8
Vậy: d: 2x + 3y – 8 = 0
* Cách 2: Chọn A’(2; -1) ∈ d’, (A) = A' ⇒ A(4; 0) ∈ d và chọn B’(-1;1) ∈ d’, (B) = B' ⇒ B(1;2) ∈ d
Đt d đi qua 2 điểm A, B nên PT đt d là:
⇔ 2x – 8 = -3y
⇔ 2x + 3y – 8 = 0
* Cách 3: Gọi M’(x’;y’) ∈ d’, (M) = M'
Ta có: M’ ∈ d’
⇔ 2x’ + 3y’ – 1 = 0
⇔ 2x – 4 + 3y – 3 – 1 = 0
⇔ 2x + 3y – 8 = 0
⇔ M ∈ d: 2x + 3y – 8 = 0
Ví dụ 3: Tìm tọa độ vectơ sao cho (d) = d' với d: 3x – y + 1 = 0 và d’: 3x – y – 7 = 0
Hướng dẫn giải:
d' là ảnh của d qua phép thì d' song song hoặc trùng với d
Nhận thấy d//d’ nên với mỗi điểm A ∈ d; B ∈ d' ta có:
Ví dụ 4: Phép tịnh tiến theo vectơ = (3;m). Tìm m để đt d: 4x + 6y – 1 = 0 biến thành chính nó qua phép tịnh tiến theo vectơ
Hướng dẫn giải:
C. Bài tập trắc nghiệm
Câu 1. Trong mặt phẳng tọa độ Oxy cho đường thẳng Δ có phương trình 4x - y + 3 = 0. Ảnh của đường thẳng Δ qua phép tịnh tiến T theo vectơ = (2;-1) có phương trình là:
A. 4x - y + 5 = 0.
B. 4x - y + 10 = 0.
C. 4x - y - 6 = 0.
D. x - 4y - 6 = 0.
Lời giải:
Cách 1. Gọi Δ' là ảnh của Δ qua phép . Khi đó Δ' song song hoặc trùng với Δ nên Δ' có phương trình dạng 4x - y + c = 0.
Chọn C.
Cách 2. Gọi M(x;y) là điểm bất kì thuộc đường thẳng Δ.
Thay x = x' - 2 và y = y' + 1 vào phương trình Δ ta được 4(x' - 2) - (y' + 1) + 3 = 0 ⇔ 4x' - y' - 6 = 0.
Câu 2. Trong mặt phẳng tọa độ Oxy nếu phép tịnh tiến biến điểm A(2;-1) thành điểm A'(1;2) thì nó biến đường thẳng d có phương trình 2x - y + 1 = 0 thành đường thẳng d' có phương trình nào sau đây?
A. d': 2x - y = 0.
B. d': 2x - y + 1 = 0.
C. d': 2x - y + 6 = 0.
D. d': 2x - y - 1 = 0.
Lời giải:
Gọi là vectơ thỏa mãn
Ta có (d) = d' → d' song song hoặc trùng với d. Suy ra d': 2x - y + c = 0.
Chọn C.
Câu 3. Trong mặt phẳng tọa độ Oxy nếu phép tịnh tiến biến điểm A(2;-1) thành điểm A'(2018;2015) thì nó biến đường thẳng nào sau đây thành chính nó?
A. x + y - 1 = 0.
B. x - y - 100 = 0.
C. 2x + y - 4 = 0.
D. 2x - y - 1 = 0.
Lời giải:
• Gọi là vectơ thỏa mãn
• Vì nên qua phép tịnh tiến đường thẳng biến thành chính nó khi nó có vectơ chỉ phương cùng phương với
• Xét B, đường thẳng: x - y - 100 = 0 có một vectơ pháp tuyến , suy ra vectơ chỉ phương cùng phương.
Chọn B.
Câu 4. Trong mặt phẳng tọa độ Oxy cho đường thẳng d có phương trình 2x - y + 1 = 0. Để phép tịnh tiến theo vectơ biến d thành chính nó thì phải là vectơ nào trong các vectơ sau?
A. = (2;1).
B. = (2;-1).
C. = (1;2).
D. = (-1;2).
Lời giải:
Để d biến thành chính nó khi và chỉ khi vectơ cùng phương với vectơ chỉ phương của d.
Đường thẳng d có VTPT
Chọn C.
Câu 5. Trong mặt phẳng tọa độ Oxy cho hai đường thẳng song song d và d' lần lượt có phương trình 2x - 3y - 1 = 0 và 2x - 3y + 5 = 0. Phép tịnh tiến nào sau đây không biến đường thẳng d thành đường thẳng d'?
A. = (0;2).
B. = (-3;0).
C. = (3;4).
D. = (-1;1).
Lời giải:
• Gọi = (a;b) là vectơ tịnh tiến biến đường d thành d'.
• Lấy M(x;y) ∈ d.
Thay (*) vào phương trình của d ta được 2(x' - a) - 3(y' - b) - 1 = 0 hay 2x' - 3y' - 2a + 3b - 1 = 0
suy ra phương trình d': 2x - 3y - 2a + 3b - 1 = 0
Mặt khác, theo giả thiết d': 2x - 3y + 5 = 0 ⇒ -2a + 3b - 1 = 5 (1)
Nhận thấy, = (-1;1) không thỏa mãn (1).
Chọn D.
Câu 6. Trong mặt phẳng tọa độ Oxy, cho hai đường thẳng: d: 2x - y + 4 = 0 và d': 2x - y -1 = 0. Tìm giá trị thực của tham số m để phép tịnh tiến theo vectơ = (m;-3) biến đường thẳng d thành đường thẳng d’.
A. m = 1.
B. m = 2.
C. m = 3.
D. m = 4.
Lời giải:
Chọn A.
Câu 7. Trong mặt phẳng tọa độ Oxy cho đường thẳng Δ có phương trình y = -3x + 2. Thực hiện liên tiếp hai phép tịnh tiến theo các vectơ thì đường thẳng Δ biến thành đường thẳng d có phương trình là:
A. y = - 3x + 1.
B. y = - 3x - 5.
C. y = - 3x + 9.
D. y = - 3x + 11.
Lời giải:
Từ giả thiết suy ra d là ảnh của Δ qua phép tịnh tiến theo vectơ .
Ta có = (2;3).
Biểu thức tọa độ của phép thay vào Δ ta được:
y' - 3 = -3(x' - 2) + 2
↔ y' = -3x' + 11.
Chọn D.
Lưu ý:
Câu 8. Trong mặt phẳng tọa độ Oxy cho đường thẳng Δ có phương trình 5x - y + 1 = 0. Thực hiện phép tịnh tiến theo phương của trục hoành về phía trái 2 đơn vị, sau đó tiếp tục thực hiện phép tịnh tiến theo phương của trục tung về phía trên 3 đơn vị, đường thẳng Δ biến thành đường thẳng Δ' có phương trình là
A. 5x - y + 14 = 0.
B. 5x - y - 7 = 0.
C. 5x - y + 5 = 0.
D. 5x - y - 12 = 0.
Lời giải:
+) Tịnh tiến theo phương trục hoành về phía trái 2 đơn vị tức là tịnh tiến theo vectơ .
+) Tịnh tiến theo phương của trục tung về phía trên 3 đơn vị tức là tịnh tiến theo vectơ = (0;3).
+) Khi đó, ta thực hiện phép tịnh tiến theo vectơ
Ta có: thay vào Δ ta được 5(x' + 2) - (y' - 3) + 1 = 0 ⇔ 5x' - y' + 14 = 0.
Chọn A.
Câu 9. Trong mặt phẳng tọa độ Oxy, cho hai đường thẳng d: 2x - 3y + 3 = 0 và d': 2x - 3y - 5 = 0. Tìm tọa độ có phương vuông góc với d để .
Lời giải:
Chọn A
Đặt = (a;b), lấy điểm M(x;y) tùy ý thuộc d, ta có d: 2x - 3y + 3 = 0 (*)
Gỉa sử M'(x';y') = (M). Ta có thay vào (*) ta được phương trình 2x' - 3y' - 2a + 3b + 3 = 0.
Từ giả thiết suy ra -2a + 3b + 3 = -5 ⇔ 2a - 3b = -8.
Vectơ pháp tuyến của đường thẳng d là .
Câu 10. Trong mặt phẳng tọa độ Oxy cho hai đường thẳng có phương trình d: 3x - 4y + 5 = 0 và d’: 3x - 4y = 0. Phép tịnh tiến theo vectơ biến đường thẳng d thành đường thẳng d’. Khi đó, độ dài bé nhất của vectơ bằng bao nhiêu?
Lời giải:
+) Độ dài bé nhất của vectơ bằng khoảng cách giữa hai đường d và d'.
+) Nhận thấy d//d’. Nên khoảng cách từ d đến d; bằng khoảng cách từ 1 điểm bất kì trên d đến d’ (hoặc từ 1 điểm bất kì trên d’ đến d)
+) Chọn A(0;0) ∈ d'. Ta có
Chọn C.
Chú ý: Trong mặt phẳng Oxy cho M(x0;y0) và Δ: Ax + By + C = 0. Khi đó, khoảng cách từ M đến ∆ là:
D. Bài tập tự luyện
Bài 1. Phép tịnh tiến theo vectơ = (3; m). Tìm m để đường thẳng d: 4x + 6y – 1 = 0 biến thành chính nó qua phép tịnh tiến theo vectơ .
Bài 2. Trong mặt phẳng Oxy cho đường thẳng d có phương trình 3x – y – 9 = 0. Tìm phép tịnh tiến theo vectơ có phương song song với trục Ox biến d thành đường thẳng d' đi qua gốc tọa độ và viết phương trình đường thẳng d'.
Bài 3. Trong mặt phẳng vectơ = (−2;1) cho, đường thẳng d có phương trình 2x − 3y + 3 = 0, đường thẳng d1 có phương trình 2x − 3y – 5 = 0.
a) Viết phương trình của đường thẳng d’ là ảnh của d qua .
b) Tìm tọa độ của có giá vuông góc với đường thẳng d để d1 là ảnh của d qua .
Bài 4. Cho đường thẳng d có phương trình: 2x – y + 3 = 0. Tìm ảnh của d qua phép tịnh tiến theo vectơ , biết = (-2; 1).
Bài 5. Tìm ảnh của đường thẳng d: 2x + 3y – 2 = 0 qua phép tịnh tiến theo vectơ = (2; 3).
Xem thêm các dạng bài tập Toán lớp 11 có trong đề thi THPT Quốc gia khác:
- Tính chất của phép tịnh tiến cực hay
- Cách tìm ảnh của 1 điểm qua phép tịnh tiến cực hay
- Cách tìm ảnh của 1 đường thẳng qua phép tịnh tiến cực hay
- Cách tìm ảnh của 1 đường tròn qua phép tịnh tiến cực hay
- Tính chất đối xứng trục cực hay
- Tìm ảnh của một điểm qua phép đối xứng trục cực hay
Tủ sách VIETJACK shopee lớp 10-11 cho học sinh và giáo viên (cả 3 bộ sách):
Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.
Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.
- Giải Tiếng Anh 11 Global Success
- Giải sgk Tiếng Anh 11 Smart World
- Giải sgk Tiếng Anh 11 Friends Global
- Lớp 11 - Kết nối tri thức
- Soạn văn 11 (hay nhất) - KNTT
- Soạn văn 11 (ngắn nhất) - KNTT
- Giải sgk Toán 11 - KNTT
- Giải sgk Vật Lí 11 - KNTT
- Giải sgk Hóa học 11 - KNTT
- Giải sgk Sinh học 11 - KNTT
- Giải sgk Lịch Sử 11 - KNTT
- Giải sgk Địa Lí 11 - KNTT
- Giải sgk Giáo dục KTPL 11 - KNTT
- Giải sgk Tin học 11 - KNTT
- Giải sgk Công nghệ 11 - KNTT
- Giải sgk Hoạt động trải nghiệm 11 - KNTT
- Giải sgk Giáo dục quốc phòng 11 - KNTT
- Giải sgk Âm nhạc 11 - KNTT
- Lớp 11 - Chân trời sáng tạo
- Soạn văn 11 (hay nhất) - CTST
- Soạn văn 11 (ngắn nhất) - CTST
- Giải sgk Toán 11 - CTST
- Giải sgk Vật Lí 11 - CTST
- Giải sgk Hóa học 11 - CTST
- Giải sgk Sinh học 11 - CTST
- Giải sgk Lịch Sử 11 - CTST
- Giải sgk Địa Lí 11 - CTST
- Giải sgk Giáo dục KTPL 11 - CTST
- Giải sgk Hoạt động trải nghiệm 11 - CTST
- Giải sgk Âm nhạc 11 - CTST
- Lớp 11 - Cánh diều
- Soạn văn 11 Cánh diều (hay nhất)
- Soạn văn 11 Cánh diều (ngắn nhất)
- Giải sgk Toán 11 - Cánh diều
- Giải sgk Vật Lí 11 - Cánh diều
- Giải sgk Hóa học 11 - Cánh diều
- Giải sgk Sinh học 11 - Cánh diều
- Giải sgk Lịch Sử 11 - Cánh diều
- Giải sgk Địa Lí 11 - Cánh diều
- Giải sgk Giáo dục KTPL 11 - Cánh diều
- Giải sgk Tin học 11 - Cánh diều
- Giải sgk Công nghệ 11 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 11 - Cánh diều
- Giải sgk Giáo dục quốc phòng 11 - Cánh diều
- Giải sgk Âm nhạc 11 - Cánh diều