Các bài toán về tiếp tuyến của hàm số
Bài viết Các bài toán về tiếp tuyến của hàm số với phương pháp giải chi tiết giúp học sinh ôn tập, biết cách làm bài tập Các bài toán về tiếp tuyến của hàm số.
Các bài toán về tiếp tuyến của hàm số
Bài giảng: Cách viết phương trình tiếp tuyến của đồ thị hàm số - Cô Nguyễn Phương Anh (Giáo viên VietJack)
A. Phương pháp giải & Ví dụ
Ví dụ 1: Cho hàm số y = x4 + (1/2)mx2 + m - 1 có đồ thị (C). Biết tiếp tuyến của (C) tại điểm có hoành độ bằng -1 vuông góc với đường thẳng có phương trình x - 3y + 1 = 0. Tìm m.
Hướng dẫn giải:
- Ta có y' = 4x3 + mx
- Hệ số góc của tiếp tuyến tại điểm có hoành độ là -1 là y'(-1)=-4 - m
- Hệ số góc của đường thẳng x - 3y + 1 = 0 hay y = (1/3)x + 1/3 là 1/3
- Vì tiếp tuyến của (C) tại điểm có hoành độ bằng -1 vuông góc với đường thẳng có phương trình x - 3y + 1 = 0 nên (-4 - m).(1/3) = -1 ⇔ -4 - m = 3 ⇔ m = -1
Ví dụ 2: Cho y = (3 - 2x)/(x + 1) (C). Viết phương trình tiếp tuyến của (C) biết tiếp tuyến đi qua hai điểm A(-7;6) và B(-3;10).
Hướng dẫn giải:
Phương trình tiếp tuyến của (C) tại điểm có hoành độ xo (xo ≠ -1) là:
Δ: y = y' (xo )(x - xo ) + y(xo ) ⇒ Δ:y = - 5/(xo + 1)2 (x - xo ) + (3 - 2xo )/(xo + 1)
⇒ Δ: 5x + (xo + 1)2 y + 2xo2 - 6xo - 3 = 0
Vì Δ cách đều các điểm A và B nênc
d(A; Δ) = d(B; Δ)
Vậy các tiếp tuyến cách đều A và B là y = (-5/4)x + 7/4 và y = -5x - 17
Ví dụ 3: Tìm m để (Cm): y = x3 + 3x2 + mx + 1 cắt đường thẳng y = 1 tại ba điểm phân biệt C(0; 1), D, E sao cho các tiếp tuyến với (Cm) tại D và E vuông góc với nhau.
Hướng dẫn giải:
Phương trình hoành độ giao điểm x3 + 3x2 + mx + 1 = 1 ⇔ x3 + 3x2 + mx = 0
⇔ x(x2 + 3x + m) = 0 ⇔
Để (Cm): y = x3 + 3x2 + mx + 1 cắt đường thẳng y = 1 tại ba điểm phân biệt C(0; 1), D, E thì phương trình (*) phải có hai nghiệm phân biệt khác 0
Gọi x1, x2là hai nghiệmcủa phương trình (*) khi đó tọa độ của D và E lần lượt có dạng D(x1; 1); E(x2; 1) thỏa mãn hệ thức Vi ét
Ta có y' = 3x2 + 6x + m
Vì các tiếp tuyến với (Cm) tại D và E vuông góc với nhau nên ta có:
y'(x1 ).y'(x2)=-1⇔ (3x12 + 6x1 + m)(3x22 + 6x2 + m) = -1
⇔ 9(x1 x2)2 + 18x1x2(x1 + x2) + 3m[(x1 + x2)2 - 2x1x2] + 36x1x2 + 6m(x1 + x2) + m2 = -1
⇔ 9m2 -54m + 3m(9 - 2m) + 36m - 18m + m2 = -1
⇔ 4m2 -9m + 1 = 0 ⇔
Vậy giá trị của tham số m cần tìm là m = (9 + √65)/8 và m = (9 - √65)/8
B. Bài tập vận dụng
Bài 1: Cho hàm số y = 4x2 + 3mx + 6 (C). Tìm m để (C) có tiếp tuyến đi qua điểm A(1; -2).
Bài 2: Cho hàm số y = 3x3 + 3mx2 + (2m + 1)x + 1. Tìm m để tiếp tuyến tại điểm có hoành độ x = 1 đi qua điểm A(2; 2).
Bài 3: Cho y = (1/3)x3 - mx2 - x + m - 1 (C). Tìm m để hệ số góc của tiếp tuyến có hệ số góc nhỏ nhất của đồ thị là -10. Viết phương trình các tiếp tuyến đó.
Bài 4: Cho y = (1/3)x3 - m/2 x2 + (1/3)(Cm). Gọi M là điểm thuộc (Cm) có hoành độ bằng -1. Tìm m để tiếp tuyến tại M của (Cm) song song với đường thẳng d: 5x - y = 0.
Bài 5: Cho y = mx4 + (3m + 1/24)x2 + 2 (Cm). Gọi A và B lần lượt là các điểm có hoành độ bằng -1 và 2 của (Cm). Tìm m để các tiếp tuyến của (Cm) tại A và B vuông góc với nhau.
Bài 6: Cho y = (1 - x)/(2x + 1) (C). Viết phương trình tiếp tuyến của (C) biết tiếp tuyến cách I(-1/2; -1/2) một khoảng bằng 3/√10.
Bài 7: Tìm m để (Cm):y = x3 /3 - 1/2(m + 2)x2 + 2mx + 1 tiếp xúc với đường thẳng y = 1
Bài 8: Viết phương trình tiếp tuyến của đồ thị (C): y = x3 - 6x2 + 9x - 2 tại điểm M, biết M cùng hai điểm cực trị của (C) tạo thành tam giác có diện tích bằng 6.
Xem thêm các dạng bài tập Toán lớp 12 có trong đề thi THPT Quốc gia khác:
- Dạng 1: Viết phương trình tiếp tuyến của đồ thị hàm số
- Trắc nghiệm viết phương trình tiếp tuyến của đồ thị hàm số
- Trắc nghiệm về tiếp tuyến của hàm số
Sách VietJack thi THPT quốc gia 2025 cho học sinh 2k7:
- Giải Tiếng Anh 12 Global Success
- Giải sgk Tiếng Anh 12 Smart World
- Giải sgk Tiếng Anh 12 Friends Global
- Lớp 12 Kết nối tri thức
- Soạn văn 12 (hay nhất) - KNTT
- Soạn văn 12 (ngắn nhất) - KNTT
- Giải sgk Toán 12 - KNTT
- Giải sgk Vật Lí 12 - KNTT
- Giải sgk Hóa học 12 - KNTT
- Giải sgk Sinh học 12 - KNTT
- Giải sgk Lịch Sử 12 - KNTT
- Giải sgk Địa Lí 12 - KNTT
- Giải sgk Giáo dục KTPL 12 - KNTT
- Giải sgk Tin học 12 - KNTT
- Giải sgk Công nghệ 12 - KNTT
- Giải sgk Hoạt động trải nghiệm 12 - KNTT
- Giải sgk Giáo dục quốc phòng 12 - KNTT
- Giải sgk Âm nhạc 12 - KNTT
- Giải sgk Mĩ thuật 12 - KNTT
- Lớp 12 Chân trời sáng tạo
- Soạn văn 12 (hay nhất) - CTST
- Soạn văn 12 (ngắn nhất) - CTST
- Giải sgk Toán 12 - CTST
- Giải sgk Vật Lí 12 - CTST
- Giải sgk Hóa học 12 - CTST
- Giải sgk Sinh học 12 - CTST
- Giải sgk Lịch Sử 12 - CTST
- Giải sgk Địa Lí 12 - CTST
- Giải sgk Giáo dục KTPL 12 - CTST
- Giải sgk Tin học 12 - CTST
- Giải sgk Hoạt động trải nghiệm 12 - CTST
- Giải sgk Âm nhạc 12 - CTST
- Lớp 12 Cánh diều
- Soạn văn 12 Cánh diều (hay nhất)
- Soạn văn 12 Cánh diều (ngắn nhất)
- Giải sgk Toán 12 Cánh diều
- Giải sgk Vật Lí 12 - Cánh diều
- Giải sgk Hóa học 12 - Cánh diều
- Giải sgk Sinh học 12 - Cánh diều
- Giải sgk Lịch Sử 12 - Cánh diều
- Giải sgk Địa Lí 12 - Cánh diều
- Giải sgk Giáo dục KTPL 12 - Cánh diều
- Giải sgk Tin học 12 - Cánh diều
- Giải sgk Công nghệ 12 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 12 - Cánh diều
- Giải sgk Giáo dục quốc phòng 12 - Cánh diều
- Giải sgk Âm nhạc 12 - Cánh diều