Các bài toán về tiếp tuyến của hàm số - Toán lớp 12



Các bài toán về tiếp tuyến của hàm số

A. Phương pháp giải & Ví dụ

Ví dụ 1: Cho hàm số y = x4 + (1/2)mx2 + m - 1 có đồ thị (C). Biết tiếp tuyến của (C) tại điểm có hoành độ bằng -1 vuông góc với đường thẳng có phương trình x - 3y + 1 = 0. Tìm m.

Hướng dẫn giải:

   - Ta có y' = 4x3 + mx

   - Hệ số góc của tiếp tuyến tại điểm có hoành độ là -1 là y'(-1)=-4 - m

   - Hệ số góc của đường thẳng x - 3y + 1 = 0 hay y = (1/3)x + 1/3 là 1/3

   - Vì tiếp tuyến của (C) tại điểm có hoành độ bằng -1 vuông góc với đường thẳng có phương trình x - 3y + 1 = 0 nên (-4 - m).(1/3) = -1 ⇔ -4 - m = 3 ⇔ m = -1

Ví dụ 2: Cho y = (3 - 2x)/(x + 1) (C). Viết phương trình tiếp tuyến của (C) biết tiếp tuyến đi qua hai điểm A(-7;6) và B(-3;10).

Hướng dẫn giải:

   Phương trình tiếp tuyến của (C) tại điểm có hoành độ xo (xo ≠ -1) là:

   Δ: y = y' (xo )(x - xo ) + y(xo ) ⇒ Δ:y = - 5/(xo + 1)2 (x - xo ) + (3 - 2xo )/(xo + 1)

   ⇒ Δ: 5x + (xo + 1)2 y + 2xo2 - 6xo - 3 = 0

    Vì Δ cách đều các điểm A và B nênc

   d(A; Δ) = d(B; Δ)

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

   Vậy các tiếp tuyến cách đều A và B là y = (-5/4)x + 7/4 và y = -5x - 17

Ví dụ 3: Tìm m để (Cm): y = x3 + 3x2 + mx + 1 cắt đường thẳng y = 1 tại ba điểm phân biệt C(0; 1), D, E sao cho các tiếp tuyến với (Cm) tại D và E vuông góc với nhau.

Hướng dẫn giải:

   Phương trình hoành độ giao điểm x3 + 3x2 + mx + 1 = 1 ⇔ x3 + 3x2 + mx = 0

   ⇔ x(x2 + 3x + m) = 0 ⇔ Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

   Để (Cm): y = x3 + 3x2 + mx + 1 cắt đường thẳng y = 1 tại ba điểm phân biệt C(0; 1), D, E thì phương trình (*) phải có hai nghiệm phân biệt khác 0

   Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

   Gọi x1, x2là hai nghiệmcủa phương trình (*) khi đó tọa độ của D và E lần lượt có dạng D(x1; 1); E(x2; 1) thỏa mãn hệ thức Vi ét Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

   Ta có y' = 3x2 + 6x + m

   Vì các tiếp tuyến với (Cm) tại D và E vuông góc với nhau nên ta có:

   y'(x1 ).y'(x2)=-1⇔ (3x12 + 6x1 + m)(3x22 + 6x2 + m) = -1

   ⇔ 9(x1 x2)2 + 18x1x2(x1 + x2) + 3m[(x1 + x2)2 - 2x1x2] + 36x1x2 + 6m(x1 + x2) + m2 = -1

   ⇔ 9m2 -54m + 3m(9 - 2m) + 36m - 18m + m2 = -1

   ⇔ 4m2 -9m + 1 = 0 ⇔ Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

   Vậy giá trị của tham số m cần tìm là m = (9 + √65)/8 và m = (9 - √65)/8

B. Bài tập vận dụng

Bài 1: Cho hàm số y = 4x2 + 3mx + 6 (C). Tìm m để (C) có tiếp tuyến đi qua điểm A(1; -2).

Bài 2: Cho hàm số y = 3x3 + 3mx2 + (2m + 1)x + 1. Tìm m để tiếp tuyến tại điểm có hoành độ x = 1 đi qua điểm A(2; 2).

Bài 3: Cho y = (1/3)x3 - mx2 - x + m - 1 (C). Tìm m để hệ số góc của tiếp tuyến có hệ số góc nhỏ nhất của đồ thị là -10. Viết phương trình các tiếp tuyến đó.

Bài 4: Cho y = (1/3)x3 - m/2 x2 + (1/3)(Cm). Gọi M là điểm thuộc (Cm) có hoành độ bằng -1. Tìm m để tiếp tuyến tại M của (Cm) song song với đường thẳng d: 5x - y = 0.

Bài 5: Cho y = mx4 + (3m + 1/24)x2 + 2 (Cm). Gọi A và B lần lượt là các điểm có hoành độ bằng -1 và 2 của (Cm). Tìm m để các tiếp tuyến của (Cm) tại A và B vuông góc với nhau.

Bài 6: Cho y = (1 - x)/(2x + 1) (C). Viết phương trình tiếp tuyến của (C) biết tiếp tuyến cách I(-1/2; -1/2) một khoảng bằng 3/√10.

Bài 7: Tìm m để (Cm):y = x3 /3 - 1/2(m + 2)x2 + 2mx + 1 tiếp xúc với đường thẳng y = 1

Bài 8: Viết phương trình tiếp tuyến của đồ thị (C): y = x3 - 6x2 + 9x - 2 tại điểm M, biết M cùng hai điểm cực trị của (C) tạo thành tam giác có diện tích bằng 6.

Đáp án và hướng dẫn giải

Đang biên soạn

Xem thêm các dạng bài tập Toán lớp 12 có trong đề thi THPT Quốc gia khác:

Đã có app VietJack trên điện thoại, giải bài tập SGK, soạn văn, văn mẫu.... Tải App để chúng tôi phục vụ tốt hơn.

Tải App cho Android hoặc Tải App cho iPhone

Loạt bài Chuyên đề: Lý thuyết - Bài tập Toán lớp 12 Đại số, Giải tích và Hình học có đáp án có đầy đủ Lý thuyết và các dạng bài được biên soạn bám sát nội dung chương trình sgk Giải tích 12 và Hình học 12.

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


tiep-tuyen.jsp


Các loạt bài lớp 12 khác