Viết phương trình tiếp tuyến của đồ thị hàm số - Lý thuyết và Bài tập đầy đủ các dạng có đáp án



Chuyên đề: Tiếp tuyến của đồ thị hàm số

Viết phương trình tiếp tuyến của đồ thị hàm số

Phương pháp giải

1. Ý nghĩa hình học của đạo hàm

Cho hàm số y = f(x) có đồ thị (C) và điểm. M0 (x0; y0) ∈ (C)

Tiếp tuyến của đồ thị (C) tại điểm M0 có dạng y = f'(x0 )(x - x0 ) + y0

Trong đó:

 Điểm M0 (x0; y0) ∈(C) được gọi là tiếp điểm ( với y0 = f(x0)).

 k = f'x0) là hệ số góc của tiếp tuyến.

Chú ý:

 Đường thẳng bất kỳ đi qua M0 (x0; y0) có hệ số góc k, có phương trình

y = k(x - x0 ) + y0

 Cho hai đường thẳng Δ1:y = k1 x + m1 và Δ2:y = k2 x + m2

Lúc đó: Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

2. Điều kiện tiếp xúc của hai đồ thị

Cho hai hàm số y = f(x),(C) và y = g(x),(C')

(C) và (C' ) tiếp xúc nhau khi chỉ khi hệ phương trình

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp áncó nghiệm.

Nghiệm của hệ là hoành độ tiếp điểm của hai đồ thị đó.

Đặc biệt: Đường thẳng y = kx + m là tiếp tuyến với (C):y = f(x) khi chỉ khi hệ Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp áncó nghiệm.

3. Các dạng phương trình tiếp tuyến thường gặp

Cho hàm số y = f(x) gọi đồ thị của hàm số là (C)

Dạng 1. Viết phương trình tiếp tuyến của đồ thị hàm số (C):y = f(x) tại M0 (x0; y0)

Phương pháp

Bước 1. Tính y' = f' (x) suy ra hệ số góc của phương trình tiếp tuyến là k = y' (x0).

Bước 2. Phương trình tiếp tuyến của đồ thị (C) tại điểm M0 (x0; y0) có dạng

y - y0 = f'(x0)(x - x0)

Dạng 2. Viết phương trình tiếp tuyến của đồ thị hàm số (C):y = f(x) có hệ số góc k cho trước.

Phương pháp

Bước 1. Gọi M0 (x0; y0) là tiếp điểm và tính y' = f' (x).

Bước 2. Hệ số góc tiếp tuyến là k = f' (x0). . Giải phương trình này tìm được x0 thay vào hàm số được y0.

Bước 3. Với mỗi tiếp điểm ta tìm được các tiếp tuyến tương ứng

d: y - y0 = f' (x0)(x - x0)

Chú ý: Đề bài thường cho hệ số góc tiếp tuyến dưới các dạng sau:

Tiếp tuyến d Δ:y = ax + b ⇒ hệ số góc của tiếp tuyến là k = a

Tiếp tuyến d Δ:y = ax + b(a ≠ 0)⇒ hệ số góc của tiếp tuyến là k = -1/a

Tiếp tuyến tạo với trục hoành một góc α thì hệ số góc của tiếp tuyến d là k = ±tan⁡α

Dạng 3. Viết phương trình tiếp tuyến của đồ thị hàm số (C):y = f(x) biết tiếp tuyến đi qua điểm A(xA; yA)

Phương pháp

Cách 1.

Bước 1: Phương trình tiếp tuyến đi qua A(xA; yA) hệ số góc k có dạng

d:y = k(x - xA ) + yA (*)

Bước 2: là tiếp tuyến của khi và chỉ khi hệ sau có nghiệm:

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Bước 3: Giải hệ này tìm được x suy ra k và thế vào phương trình (*), ta được tiếp tuyến cần tìm.

Cách 2.

Bước 1. Gọi M(x0; f(x0 )) là tiếp điểm và tính hệ số góc tiếp tuyến

k = y'(x0 ) = f' (x0) theo x0

Bước 2. Phương trình tiếp tuyến có dạng d = y'(x0 )(x - x0 ) + y0 (**). Do điểm A(xA; yA) ∈ d nên yA = y'(x0 )(xA - x0 ) + y0 giải phương trình này ta tìm được x0 .

Bước 3. Thế x0 vào (**) ta được tiếp tuyến cần tìm.

Ví dụ minh họa

Ví dụ 1: Cho hàm số (C):y = x3 + 3x2. Viết phương trình tiếp tuyến của đồ thị hàm số tại điểm M(1; 4).

Hướng dẫn

Ta có y' = 3x2 + 6x; y'(1) = 9

Phương trình tiếp tuyến của đồ thị hàm số tại điểm M(1; 4) là:

y = 9(x - 1) + 4 = 9x - 5

Ví dụ 2: Cho hàm số (C):y = 4x3 - 6x2 + 1. Viết phương trình tiếp tuyến của (C) biết tiếp tuyến đi qua điểm A(-1; -9).

Hướng dẫn

Ta có y' = 12x2 - 12x

Gọi M(x0, y0) là tọa độ tiếp điểm

Phương trình tiếp tuyến của (C) tại điểm M có dạng:

y = (12x02 - 12x0> )(x - x0 ) + 4x03 - 6x02 + 1

Vì tiếp tuyến đi qua điểm A(-1; -9) nên ta có:

-9 = (12x02 - 12x0 )( -1 - x0 ) + 4x03 - 6x03 + 1

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Với Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án .

Khi đó phương trình tiếp tuyến cần tìm là y = 15/4 (x - 5/4) - 9/16 = 15/4 x - 21/4

Với x0 = -1 thì Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án.

Khi đó phương trình tiếp tuyến cần tìm là y = 24(x + 1) - 9 = 24x + 15

Ví dụ 3: Cho hàm số (C):Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án. Viết phương trình tiếp tuyến của (C) biết tiếp tuyến song song với đường thẳng có phương trình Δ:3x - y + 2 = 0

Hướng dẫn

ĐKXĐ: x ≠ -2. Ta có y' = 3/(x + 2)2 .

Phương trình Δ:3x - y + 2 = 0 hay Δ:y = 3x + 2

Gọi tọa độ tiếp điểm là M(x0, y0)

Vì tiếp tuyến song song với đường thẳng có phương trình Δ:3x - y + 2 = 0 nên ta có

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Với x0 = -1 Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Khi đó phương trình tiếp tuyến cần tìm là y = 3(x + 1) - 1 = 3x + 2 (loại).

Với x0 = -3 Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Khi đó phương trình tiếp tuyến cần tìm là y = 3(x + 3) + 5 = 3x + 14 (thỏa mãn)

Chuyên đề Toán 12: đầy đủ lý thuyết và các dạng bài tập có đáp án khác:

Đã có app VietJack trên điện thoại, giải bài tập SGK, soạn văn, văn mẫu.... Tải App để chúng tôi phục vụ tốt hơn.

Tải App cho Android hoặc Tải App cho iPhone

Loạt bài Chuyên đề: Lý thuyết - Bài tập Toán lớp 12 Đại số, Giải tích và Hình học có đáp án có đầy đủ Lý thuyết và các dạng bài được biên soạn bám sát nội dung chương trình sgk Giải tích 12 và Hình học 12.

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


tiep-tuyen.jsp


Các loạt bài lớp 12 khác