Lý thuyết về mặt tròn xoay hay, chi tiết nhất
Bài viết Lý thuyết về mặt tròn xoay với phương pháp giải chi tiết giúp học sinh ôn tập, biết cách làm bài tập Lý thuyết về mặt tròn xoay.
Lý thuyết về mặt tròn xoay hay, chi tiết nhất
Bài giảng: Tất tần tật về Mặt nón - Cô Nguyễn Phương Anh (Giáo viên VietJack)
1. Sự tạo thành mặt tròn xoay
Trong không gian cho mặt phẳng (P) chứa đường thẳng Δ và một đường C. Khi quay mặt phẳng (P) quanh Δ một góc 360º thì mỗi điểm M trên đường C vạch ra một đường tròn có tâm O thuộc Δ và nằm trên mặt phẳng vuông góc với Δ. Như vậy, khi quay mặt phẳng (P) quanh đường thẳng Δ thì đường C sẽ tạo nên một hình được gọi là mặt tròn xoay.
Đường C được gọi là đường sinh của mặt tròn xoay đó. Đường thẳng Δ được gọi là trục của mặt tròn xoay.
2. Tính chất của mặt tròn xoay
- Nếu cắt mặt tròn xoay bởi một mặt phẳng vuông góc với trục Δ ta được phần giao là đường tròn có tâm thuộc Δ.
- Mỗi điểm M trên mặt tròn xoay đều nằm trên một đường tròn thuộc mặt tròn xoay và đường tròn này có tâm thuộc trục Δ.
3. Ví dụ minh họa
Ví dụ 1 Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc với đáy SC = a√6 . Khi tam giác SAC quay quanh cạnh SA thì đường gấp khúc SAC tạo thành một hình nón tròn xoay. Thể tích của khối nón tròn xoay đó là:
Hướng dẫn giải:
+ Do ABCD là hình vuông cạnh a nên AC = a√2
+ Xét tam giác SAC có:
SA =
= 2a
+ Hình nón tròn xoay được tạo thành có bán kính đường tròn đáy r = AC = a√2 ; đường cao SA = 2a. Do đó, thể tích hình nón là:
Chọn A.
Ví dụ 2 Trong không gian, cho tam giác ABC cân tại A, AB = a√7 ; BC = 4a. Gọi H là trung điểm của BC. Tính thể tích V của hình nón nhận được khi quay tam giác ABC xung quanh trục AH.
Hướng dẫn giải:
Do tam giác ABC là tam giác cân tại A có AH là đường trung tuyến nên AH ⊥ BC
Khi quay tam giác ABC xung quanh trục AH ta được hình nón có:
+ Đường sinh l = AB = a√7
+ Bán kính đáy r = = 2a
Suy ra đường cao của hình nón là:
+ Thể tích của hình nón tạo thành là:
Chọn A.
Ví dụ 3 Cho một hình cầu bán kính 5, cắt hình cầu này bằng một mặt phẳng sao cho thiết diện tạo thành là một đường kính 4. Tính thể tích của khối nón có đáy là thiết diện vừa tạo và đỉnh là tâm hình cầu đã cho. ( kết quả làm tròn tới hàng phần trăm).
A.18,18 B. 19,19 C. 19,2. D. 17,16
Hướng dẫn giải:
Gọi thiết diện là đường tròn tâm A, đường kính d= 4 ⇒ bán kính r = 2. Gọi MN là một đường kính của đường tròn (A).
Gọi O là tâm của mặt cầu đã cho.
Hình nón có đáy là thiết diện là hình tròn tâm A và đỉnh là O có:
• Bán kính đường tròn đáy là: r = 2.
• Đường sinh là OM = 5 ( = bán kính của hình cầu đã cho)
• Chiều cao:
Diện tích đường tròn đáy là: S = πr2 = 4π
Thể tích khối nón cần tính là:
Chọn C
Xem thêm các dạng bài tập Toán lớp 12 có trong đề thi THPT Quốc gia khác:
- Lý thuyết Khái niệm về mặt tròn xoay
- Lý thuyết Hình nón, khối nón
- Dạng 1: Tìm bán kính, đường sinh, diện tích, thể tích của hình nón
- Dạng 2: Thiết diện của hình nón
Sách VietJack thi THPT quốc gia 2025 cho học sinh 2k7:
- Giải Tiếng Anh 12 Global Success
- Giải sgk Tiếng Anh 12 Smart World
- Giải sgk Tiếng Anh 12 Friends Global
- Lớp 12 Kết nối tri thức
- Soạn văn 12 (hay nhất) - KNTT
- Soạn văn 12 (ngắn nhất) - KNTT
- Giải sgk Toán 12 - KNTT
- Giải sgk Vật Lí 12 - KNTT
- Giải sgk Hóa học 12 - KNTT
- Giải sgk Sinh học 12 - KNTT
- Giải sgk Lịch Sử 12 - KNTT
- Giải sgk Địa Lí 12 - KNTT
- Giải sgk Giáo dục KTPL 12 - KNTT
- Giải sgk Tin học 12 - KNTT
- Giải sgk Công nghệ 12 - KNTT
- Giải sgk Hoạt động trải nghiệm 12 - KNTT
- Giải sgk Giáo dục quốc phòng 12 - KNTT
- Giải sgk Âm nhạc 12 - KNTT
- Giải sgk Mĩ thuật 12 - KNTT
- Lớp 12 Chân trời sáng tạo
- Soạn văn 12 (hay nhất) - CTST
- Soạn văn 12 (ngắn nhất) - CTST
- Giải sgk Toán 12 - CTST
- Giải sgk Vật Lí 12 - CTST
- Giải sgk Hóa học 12 - CTST
- Giải sgk Sinh học 12 - CTST
- Giải sgk Lịch Sử 12 - CTST
- Giải sgk Địa Lí 12 - CTST
- Giải sgk Giáo dục KTPL 12 - CTST
- Giải sgk Tin học 12 - CTST
- Giải sgk Hoạt động trải nghiệm 12 - CTST
- Giải sgk Âm nhạc 12 - CTST
- Lớp 12 Cánh diều
- Soạn văn 12 Cánh diều (hay nhất)
- Soạn văn 12 Cánh diều (ngắn nhất)
- Giải sgk Toán 12 Cánh diều
- Giải sgk Vật Lí 12 - Cánh diều
- Giải sgk Hóa học 12 - Cánh diều
- Giải sgk Sinh học 12 - Cánh diều
- Giải sgk Lịch Sử 12 - Cánh diều
- Giải sgk Địa Lí 12 - Cánh diều
- Giải sgk Giáo dục KTPL 12 - Cánh diều
- Giải sgk Tin học 12 - Cánh diều
- Giải sgk Công nghệ 12 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 12 - Cánh diều
- Giải sgk Giáo dục quốc phòng 12 - Cánh diều
- Giải sgk Âm nhạc 12 - Cánh diều