Các dạng bài tập Hình nón, khối nón chọn lọc, có đáp án



Phần Hình nón, khối nón Toán lớp 12 với các dạng bài tập chọn lọc có trong Đề thi THPT Quốc gia và trên 50 bài tập trắc nghiệm chọn lọc, có đáp án. Vào Xem chi tiết để theo dõi các dạng bài Hình nón, khối nón hay nhất tương ứng.

Các dạng bài tập Hình nón, khối nón chọn lọc, có đáp án

Bài giảng: Tất tần tật về Mặt nón - Cô Nguyễn Phương Anh (Giáo viên VietJack)

Tìm bán kính, đường sinh, diện tích, thể tích của hình nón

A. Phương pháp giải & Ví dụ

Cho hình nón có chiều cao là h, bán kính đáy R và đường sinh là l thì có:

    + Diện tích xung quanh: Sxq = πRl

    + Diện tích đáy (hình tròn): Sđ = πR2

    + Diện tích toàn phần hình tròn: S = Sđ + Sxq = π.r.l+πr2

    + Thể tích khối nón:

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Ví dụ minh họa

Bài 1: Cho hình nón có bán kính đáy là 4a, chiều cao là 3a. Tính đường sinh, diện tích xung quanh, diện tích toàn phần và thể tích của hình nón trên.

Lời giải:

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Xét tam giác SOA có: h=SO=3a;r=AO=4a

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Diện tích xung quanh: Sxq=πRl=π.4a.5a=20πa2

Diện tích toàn phần: Stp= πRl+πR2=20πa2+25πa2=45πa2

Thể tích của hình nón là:

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Bài 2: Cho hình nón có đường sinh l, góc giữa đường sinh và mặt phẳng đáy là 30º. Tính diện tích xung quanh của hình nón

Lời giải:

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Xét tam giác SOA vuông tại O có:

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Diện tích xung quanh:

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Bài 3: Một khối nón có thể tích bằng 30 π, nếu giữ nguyên chiều cao và tăng bán kính khối nón đó lên 2 lần thì thể tích của khối nón mới bằng bao nhiêu?

Lời giải:

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

là thể tích của khối nón ban đầu

⇒ Thể tích của khối nón lúc sau là:

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Cách xác định Thiết diện của hình nón

A. Phương pháp giải & Ví dụ

- Nếu cắt mặt nón tròn xoay bởi mặt phẳng đi qua đỉnh thì có các trường hợp sau xảy ra:

    + Mặt phẳng cắt mặt nón theo 2 đường sinh thì thiết diện là tam giác cân.

    + Mặt phẳng tiếp xúc với mặt nón theo một đường sinh, trong trường hợp này, người ta gọi đó là mặt phẳng tiếp diện của mặt nón.

- Nếu cắt mặt nón tròn xoay bởi mặt phẳng không đi qua đỉnh thì có các trường hợp sau xảy ra:

    + Nếu mặt phẳng cắt vuông góc với trục hình nón thì giao tuyến là một đường tròn.

    + Nếu mặt phẳng cắt song song với 2 đường sinh hình nón thì giao tuyến là 2 nhánh của 1 hypebol.

    + Nếu mặt phẳng cắt song song với 1 đường sinh hình nón thì giao tuyến là 1 đường parabol.

Ví dụ minh họa

Bài 1: Cắt một hình nón bằng một mặt phẳng qua trục của nó ta được thiết diện là một tam giác đều cạnh 2a. Tính diện tích xung quanh của hình nón.

Lời giải:

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Cắt hình nón bằng một mặt phẳng qua trục của nó ta được thiết diện là tam giác SAB, ∆SAB đều cạnh 2a.

Sxq = πRl = π.a.2a = 2πa2

Bài 2: Cắt hình nón đỉnh S bởi mặt phẳng đi qua trục ta được một tam giác vuông cân có cạnh huyền bằng a√2. Tính thể tích khối nón.

Lời giải:

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Thiết diện thu được khi cắt hình nón bằng mặt phẳng đi qua trục là tam giác SAB

⇒∆SAB vuông cân tại S, có AB = a√2

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Thể tích khối nón là:

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Bài 3: Một hình nón có đường sinh bằng 3cm và góc ở đỉnh bằng 90°. Cắt hình nón bởi mặt phẳng (α) đi qua đỉnh sao cho góc giữa (α) và mặt đáy bằng 60°. Tính diện tích thiết diện

Lời giải:

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Dựng hình như hình bên với (α) là (SAC).

    + ∆SAB vuông cân tại S

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

    + Kẻ OP ⊥ AC

Ta có: OP ⊥ AC; SO ⊥ AC ⇒ SP ⊥ AC

Khi đó, góc giữa (SAC) và đáy là góc giữa SP và OP

⇒ ∠(SPO) = 60º

Xét ∆SPO vuông tại O có:

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Ta có:

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Tính diện tích xung quanh, diện tích toàn phần hình nón, tính thể tích khối nón

1. Phương pháp giải

Cho hình nón (H) có bán kính đường tròn đáy là R và độ dài đường sinh là l.

+ Diện tích xung quanh của hình nón bằng nửa tích số của độ dài đường tròn đáy và độ dài đường sinh:
Sxq = πR.l

+ Diện tích toàn phần của hình nón bằng tổng diện tích xung quanh và diện đáy:
Stp = πR.l + πR2

+ Thể tích khối nón bằng một phần ba tích số diện tích hình tròn đáy và chiều cao:

Tính diện tích xung quanh, diện tích toàn phần hình nón, tính thể tích khối nón cực hay

2. Ví dụ minh họa

Ví dụ 1. Cho hình nón tròn xoay có đỉnh là S; O là tâm của đường tròn đáy, đường sinh bằng a√2 và góc giữa đường sinh và mặt phẳng đáy bằng 600.Tính diện tích xung quanh của hình nón và thể tích của khối nón lần lượt là?

Tính diện tích xung quanh, diện tích toàn phần hình nón, tính thể tích khối nón cực hay

Hướng dẫn giải:

Tính diện tích xung quanh, diện tích toàn phần hình nón, tính thể tích khối nón cực hay

Gọi A là một điểm thuộc đường tròn đáy hình nón.

Theo giải thiết ta có đường sinh SA = a√2 và góc giữa đường sinh và mặt phẳng đáy là
Tính diện tích xung quanh, diện tích toàn phần hình nón, tính thể tích khối nón cực hay = 600 .

Trong tam giác vuôn SAO, ta có:

Tính diện tích xung quanh, diện tích toàn phần hình nón, tính thể tích khối nón cực hay

Diện tích xung quanh hình nón là:
Sxq = πRl = π.Tính diện tích xung quanh, diện tích toàn phần hình nón, tính thể tích khối nón cực hay .a√2 = πR2

Thể tích của khối nón tròn xoay
Tính diện tích xung quanh, diện tích toàn phần hình nón, tính thể tích khối nón cực hay (đvtt)

Chọn A

Ví dụ 2. Một hình nón có đường kính đáy là 2a√3 , góc ở đỉnh là 1200. Tính thể tích của khối nón đó theo a.

A. Tính diện tích xung quanh, diện tích toàn phần hình nón, tính thể tích khối nón cực hay    B. πa3    C. Tính diện tích xung quanh, diện tích toàn phần hình nón, tính thể tích khối nón cực hay    D. 2πa3

Hướng dẫn giải:

Tính diện tích xung quanh, diện tích toàn phần hình nón, tính thể tích khối nón cực hay

Gọi S là đỉnh hình nón, O là tâm đáy, A là một điểm thuộc đường tròn đáy.

Theo giả thiết dễ suy ra đường tròn đáy có bán kính là:

Do góc ở đỉnh là 1200 nên Tính diện tích xung quanh, diện tích toàn phần hình nón, tính thể tích khối nón cực hay

Xét tam giác SAO vuông tại O, ta có:
SO = Tính diện tích xung quanh, diện tích toàn phần hình nón, tính thể tích khối nón cực hay = a

Do đó chiều cao hình nón là h = SO= a.

Vậy thể tích khối nón là
V = Tính diện tích xung quanh, diện tích toàn phần hình nón, tính thể tích khối nón cực hay πr2h = Tính diện tích xung quanh, diện tích toàn phần hình nón, tính thể tích khối nón cực hay π.3a2.a = πa3

Chọn B.

Ví dụ 3. Một hình nón có đường sinh bằng 2a và diện tích xung quanh bằng 2πa2 . Thể tích khối nón là:

A. Tính diện tích xung quanh, diện tích toàn phần hình nón, tính thể tích khối nón cực hay    B. Tính diện tích xung quanh, diện tích toàn phần hình nón, tính thể tích khối nón cực hay    C. 2πa3    D. √2πa3

Hướng dẫn giải:

Ta có độ dài đường sinh là l = 2a .

Do diện tích xung quanh là 2πa2 nên :

Sxq = π.R.l = 2πa2 ⇒ R = Tính diện tích xung quanh, diện tích toàn phần hình nón, tính thể tích khối nón cực hay = a

Chiều cao của hình nón là:
h = Tính diện tích xung quanh, diện tích toàn phần hình nón, tính thể tích khối nón cực hay = √3a

Thể tích của khối nón là
V = Tính diện tích xung quanh, diện tích toàn phần hình nón, tính thể tích khối nón cực hay πR2h = Tính diện tích xung quanh, diện tích toàn phần hình nón, tính thể tích khối nón cực hay π.a2.√3 = Tính diện tích xung quanh, diện tích toàn phần hình nón, tính thể tích khối nón cực hay

Chọn A.

Xem thêm các dạng bài tập Toán lớp 12 có trong đề thi THPT Quốc gia khác:

ĐỀ THI, GIÁO ÁN, GÓI THI ONLINE DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 12

Bộ giáo án, đề thi, bài giảng powerpoint, khóa học dành cho các thầy cô và học sinh lớp 12, đẩy đủ các bộ sách cánh diều, kết nối tri thức, chân trời sáng tạo tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official




Giải bài tập lớp 12 sách mới các môn học
Tài liệu giáo viên