Các dạng bài tập Hình trụ chọn lọc, có đáp án
Phần Hình trụ Toán lớp 12 với các dạng bài tập chọn lọc có trong Đề thi THPT Quốc gia và trên 50 bài tập trắc nghiệm chọn lọc, có đáp án. Vào Xem chi tiết để theo dõi các dạng bài Hình trụ hay nhất tương ứng.
Các dạng bài tập Hình trụ chọn lọc, có đáp án
Bài giảng: Tất tần tật về Mặt trụ - Cô Nguyễn Phương Anh (Giáo viên VietJack)
- Lý thuyết Mặt trụ, hình trụ Xem chi tiết
- Dạng 1: Tính chiều cao, bán kính, diện tích, thể tích hình trụ Xem chi tiết
- Dạng 2: Thiết diện của hình trụ Xem chi tiết
- Cách tính diện tích hình trụ, thể tích khối trụ (cực hay) Xem chi tiết
- Dạng bài tập về hình trụ, mặt trụ (cực hay, có lời giải) Xem chi tiết
- Dạng bài tập hình trụ nội tiếp, ngoại tiếp hình cầu, nón, lập phương (cực hay) Xem chi tiết
Tính chiều cao, bán kính, diện tích, thể tích hình trụ
A. Phương pháp giải & Ví dụ
Cho hình trụ có chiều cao là h và bán kính đáy bằng r, khi đó:
+ Diện tích xung quanh của hình trụ: Sxq = 2πrh
+ Diện tích toàn phần của hình trụ: Stp = Sxq + Sđ = 2πrh + 2πr2
+ Thể tích khối trụ: V = πr2 h
Ví dụ minh họa
Bài 1: Một hình trụ có bán kính đáy r = 5 cm, chiều cao h = 7cm. Tính Diện tích xung quanh, diện tích toàn phần và thể tích của hình trụ.
Lời giải:
Diện tích xung quanh của hình trụ: Sxq = 2πrh = 2π.5.7 = 70π
Diện tích toàn phần của hình trụ: Stp = 2πrh + 2πr2 = 70π+2π.52 = 120π
Thể tích khối trụ: V= πr2 h = 2π.52.7 = 350π
Bài 2:
a) Một hình trụ (T) có diện tích toàn phần là 120π (cm2) và có bán kính đáy bằng 6 cm. Tính chiều cao của (T)
b) Một hình trụ (T) có thể tích bằng 81π (cm3) và đường sinh gấp ba lần bán kính đáy. Độ dài đường sinh của (T) là:
Lời giải:
a) Ta có:
Stp = 2πrh + 2πr2 = 2π.6.h + 2π.62 = 120π
⇒ h = 4(cm)
Vậy chiều cao của hình trụ là 4 cm.
b) Gọi bán kính đáy của hình trụ là r
Do đường sinh của hình trụ bằng chiều cao nên chiều cao của hình trụ là 3r
Ta có: V = πr2 h = πr2.3r = 81π ⇒ r = 3
Vậy độ dài đường sinh là 3.3 = 9 cm.
Bài 3: Hình trụ (T) được sinh ra khi quay hình chữ nhật ABCD quanh cạnh AB. Biết AC = a√2 và ∠(ACB)=45^ordm;. Tính diện tích toàn phần Stp của hình trụ (T)
Lời giải:
Khi quay hình chữ nhật ABCD quanh cạnh AB ta được hình trụ có bán kính đáy BC, đường cao AB
∆ABC vuông cân tại B có AC = a√2 ⇒ AB = BC = a.
Stp = 2πrh+2πr2 = 2π.a.a+2πa2 = 4πa2
Cách xác định thiết diện của hình trụ
A. Phương pháp giải & Ví dụ
- Nếu cắt mặt trụ tròn xoay (có bán kính là r) bởi một mặt phẳng (α) vuông góc với trục Δ thì ta được đường tròn có tâm trên Δ và có bán kính bằng r với r cũng chính là bán kính của mặt trụ đó.
- Nếu cắt mặt trụ tròn xoay (có bán kính là r) bởi một mặt phẳng (α) không vuông góc với trục Δ nhưng cắt tất cả các đường sinh, ta được giao tuyến là một đường elíp có trụ nhỏ bằng 2r và trục lớn bằng , trong đó φ là góc giữa trục Δ và mặt phẳng (α) với 0 < φ < 90º.
- Cho mặt phẳng (α) song song với trục Δ của mặt trụ tròn xoay và cách Δ một khoảng k.
+ Nếu k < r thì mặt phẳng (α) cắt mặt trụ theo hai đường sinh thì thiết diện là hình chữ nhật.
+ Nếu k = r thì mặt phẳng (α) tiếp xúc với mặt trụ theo một đường sinh.
+ Nếu k > r thì mặt phẳng (α) không cắt mặt trụ.
Ví dụ minh họa
Bài 1: Khối trụ có thiết diện qua trục là hình vuông cạnh 2a, tính diện tích xung quanh, diện tích toàn phần và thể tích của khối trụ
Lời giải:
Thiết diện là hình vuông ABCD cạnh 2a
Đường cao của hình trụ là AB = 2a, bán kính đáy OB = a.
Diện tích xung quanh của khối trụ là: Sxq = 2πrh=2π.a.2a=4πa2
Diện tích toàn phần của khối trụ là Stp = 2πrh+2πr2=4πa2+2πa2=6πa2
Thể tích của khối trụ là: V=πr2 h=π.a2.2a=2πa3
Bài 2: Khối trụ có bán kính đáy R = a .Thiết diện song song với trục và cách trục khối trụ một khoảng bằng a/2 là hình chữ nhật có diện tích bằng a2 √3 .Tính thể tích khối trụ
Lời giải:
∆BOC cân tại O có OH là đường cao
⇒ H là trung điểm của BC
ABCD là hình chữ nhật nên:
SABCD = AB.BC=AB.a√3=a2 √3⇒ AB=a
Thể tích của khối trụ là:
V=πr2 h=π.a2.a= πa3
Bài 3: Cắt khối trụ bởi một mặt phẳng qua trục ta được thiết diện là hình chữ nhật ABCD có AB và CD thuộc hai đáy của khối trụ. Biết AD = 12 cm và góc ACD bằng 60º. Tính thể tích của khối trụ
Lời giải:
Xét tam giác ADC vuông tại C có:
Thể tích của khối trụ là:
V=πr2 h=π.(2√3)2.12=144π
Cách tính diện tích hình trụ, thể tích khối trụ
1. Phương pháp giải
• Diện tích xung quanh của hình trụ là:
Sxq = 2πrh
• Diện tích toàn phần của hình trụ là:
Stp = Sxq + S2day = 2πrh + 2πr2
• Thể tích của khối trụ là: V = Sday.h = 2πr2h
Trong đó, r là bán kính đường tròn đáy của hình trụ.
2. Ví dụ minh họa
Ví dụ 1 Cho hình chữ nhật ABCD có AB = a và góc = 300 . Quay hình chữ nhật này xung quanh cạnh AD. Diện tích xung quanh của hình trụ được tạo thành là:
A. √3πa2 B. 2√3πa2 C. πa2 D. πa2
Hướng dẫn giải:
+ Khi quay hình chữ nhật này xung quanh cạnh AD ta được hình trụ như hình vẽ.
Hình trụ tạo thành có:
+ Bán kính đường tròn đáy là r = AB = a
+ Đường cao của hình trụ là:
h = BC = CD.tan300 =
Suy ra, diện tích xung quanh của hình trụ tạo thành là:
Chọn C.
Ví dụ 2 Một hình tứ diện đều ABCD cạnh a. Xét hình trụ có 1 đáy là đường tròn nội tiếp tam giác ABC và có chiều cao bằng chiều cao hình tứ diện. Diện tích xung quanh của hình trụ đó bằng:
Hướng dẫn giải:
+ Gọi O là tâm của tam giác ABC và M là trung điểm BC. ( khi đó, O là trọng tâm, trực tâm, tâm đường tròn nội tiếp ( ngoại tiếp ) tam giác ABC – vì tam giác ABC đều)
+ Ta có: AM = AM.sinC = a.sin600 =
+ Chiều cao tứ diện
Bán kính đường tròn nội tiếp đáy ABC:
r = OM =
Do đó, diện tích xung quanh của hình trụ tạo thành là:
Chọn C.
Ví dụ 3 Cho hình trụ có hai đáy là hình tròn (O) và (O’). Trên hai đường tròn lấy hai điểm A, B sao cho góc giữa AB và mặt phẳng chứa đường tròn đáy bằng 450 và khoảng cách đến trục OO’ bằng . Biết bán kính đáy bằng a, tính thể tích của khối trụ theo a.
Hướng dẫn giải:
Đặt OO’ = h. Gọi I, E, D lần lượt là trung điểm của BC, BA, OO’.
Ta có: d(AB,OO') = ED = IO' =
Tam giác ABC vuông tại C có B = 450
⇒ tam giác ABC vuông cân
⇒ BC = AC = h
Ta có:
Thể tích khối trụ là: V = πa2.a √2 = πa3√2
Chọn B.
Xem thêm các dạng bài tập Toán lớp 12 có trong đề thi THPT Quốc gia khác:
- Tổng hợp lý thuyết Chương Mặt nón, mặt trụ, mặt cầu
- Chuyên đề: Mặt cầu
- Chuyên đề: Hình trụ
- Chuyên đề: Hình nón, khối nón
Sách VietJack thi THPT quốc gia 2025 cho học sinh 2k7:
- Giải Tiếng Anh 12 Global Success
- Giải sgk Tiếng Anh 12 Smart World
- Giải sgk Tiếng Anh 12 Friends Global
- Lớp 12 Kết nối tri thức
- Soạn văn 12 (hay nhất) - KNTT
- Soạn văn 12 (ngắn nhất) - KNTT
- Giải sgk Toán 12 - KNTT
- Giải sgk Vật Lí 12 - KNTT
- Giải sgk Hóa học 12 - KNTT
- Giải sgk Sinh học 12 - KNTT
- Giải sgk Lịch Sử 12 - KNTT
- Giải sgk Địa Lí 12 - KNTT
- Giải sgk Giáo dục KTPL 12 - KNTT
- Giải sgk Tin học 12 - KNTT
- Giải sgk Công nghệ 12 - KNTT
- Giải sgk Hoạt động trải nghiệm 12 - KNTT
- Giải sgk Giáo dục quốc phòng 12 - KNTT
- Giải sgk Âm nhạc 12 - KNTT
- Giải sgk Mĩ thuật 12 - KNTT
- Lớp 12 Chân trời sáng tạo
- Soạn văn 12 (hay nhất) - CTST
- Soạn văn 12 (ngắn nhất) - CTST
- Giải sgk Toán 12 - CTST
- Giải sgk Vật Lí 12 - CTST
- Giải sgk Hóa học 12 - CTST
- Giải sgk Sinh học 12 - CTST
- Giải sgk Lịch Sử 12 - CTST
- Giải sgk Địa Lí 12 - CTST
- Giải sgk Giáo dục KTPL 12 - CTST
- Giải sgk Tin học 12 - CTST
- Giải sgk Hoạt động trải nghiệm 12 - CTST
- Giải sgk Âm nhạc 12 - CTST
- Lớp 12 Cánh diều
- Soạn văn 12 Cánh diều (hay nhất)
- Soạn văn 12 Cánh diều (ngắn nhất)
- Giải sgk Toán 12 Cánh diều
- Giải sgk Vật Lí 12 - Cánh diều
- Giải sgk Hóa học 12 - Cánh diều
- Giải sgk Sinh học 12 - Cánh diều
- Giải sgk Lịch Sử 12 - Cánh diều
- Giải sgk Địa Lí 12 - Cánh diều
- Giải sgk Giáo dục KTPL 12 - Cánh diều
- Giải sgk Tin học 12 - Cánh diều
- Giải sgk Công nghệ 12 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 12 - Cánh diều
- Giải sgk Giáo dục quốc phòng 12 - Cánh diều
- Giải sgk Âm nhạc 12 - Cánh diều