Các dạng bài tập Mặt nón, mặt trụ, mặt cầu chọn lọc, có đáp án
Phần Mặt nón, mặt trụ, mặt cầu Toán lớp 12 sẽ tổng hợp Lý thuyết, các dạng bài tập chọn lọc có trong Đề thi THPT Quốc gia và trên 200 bài tập trắc nghiệm chọn lọc, có đáp án. Vào Xem chi tiết để theo dõi các dạng bài Mặt nón, mặt trụ, mặt cầu tương ứng.
Các dạng bài tập Mặt nón, mặt trụ, mặt cầu chọn lọc, có đáp án
Tổng hợp lý thuyết Chương Mặt nón, mặt trụ, mặt cầu
- Lý thuyết Khái niệm về mặt tròn xoay Xem chi tiết
- Lý thuyết Mặt cầu Xem chi tiết
- Lý thuyết Lý thuyết tổng hợp chương Mặt nón, mặt trụ, mặt cầu Xem chi tiết
Chủ đề: Mặt cầu
- Lý thuyết Mặt cầu ngoại tiếp, mặt cầu nội tiếp Xem chi tiết
- Mặt cầu, hình cầu, khối cầu và cách giải bài tập
- Mặt trụ, hình trụ, khối trụ và cách giải bài tập
- Mặt nón, hình nón, khối nón và cách giải bài tập
- Dạng 1: Bài tập cơ bản về mặt cầu Xem chi tiết
- Dạng 2: Tìm tâm, bán kính mặt cầu ngoại tiếp Xem chi tiết
- Phương pháp xác định mặt cầu (cực hay) Xem chi tiết
- Phương pháp tính diện tích mặt cầu, thể tích khối cầu (cực hay) Xem chi tiết
- Phương pháp xác định mặt cầu nội tiếp, ngoại tiếp hình chóp (cực hay) Xem chi tiết
- Phương pháp xác định mặt cầu nội tiếp, ngoại tiếp lăng trụ (cực hay) Xem chi tiết
Chủ đề: Hình trụ
- Lý thuyết Mặt trụ, hình trụ Xem chi tiết
- Dạng 1: Tính chiều cao, bán kính, diện tích, thể tích hình trụ Xem chi tiết
- Dạng 2: Thiết diện của hình trụ Xem chi tiết
- Cách tính diện tích hình trụ, thể tích khối trụ (cực hay) Xem chi tiết
- Dạng bài tập về hình trụ, mặt trụ (cực hay, có lời giải) Xem chi tiết
- Dạng bài tập hình trụ nội tiếp, ngoại tiếp hình cầu, nón, lập phương (cực hay) Xem chi tiết
Chủ đề: Hình nón, khối nón
- Lý thuyết Khái niệm về mặt tròn xoay Xem chi tiết
- Lý thuyết Hình nón, khối nón Xem chi tiết
- Dạng 1: Tìm bán kính, đường sinh, diện tích, thể tích của hình nón Xem chi tiết
- Dạng 2: Thiết diện của hình nón Xem chi tiết
- Tính diện tích xung quanh, diện tích toàn phần hình nón, tính thể tích khối nón (cực hay) Xem chi tiết
- Cách giải dạng bài tập thiết diện của hình nón (cực hay) Xem chi tiết
- Dạng bài tập về hình nón tròn xoay (cực hay, có lời giải) Xem chi tiết
Cách xác định mặt cầu
1. Phương pháp giải
Muốn xác định tâm và bán kính của mặt cầu chúng ra cần dựa vào các tính chất sau đây:
• Tập hợp tất cả những điểm M trong không gian cách điểm O cố định một khoảng bằng R cho trước là mặt cầu tâm O bán kính R.
• Tập hợp tất cả những điểm M nhìn đoạn thẳng AB cố định dưới một góc vuông là mặt cầu đường kính AB.
• Tập hợp tất cả những điểm M sao cho tổng bình phương các khoảng cách tới hai điểm A, B cố định bằng một hằng số k2 là mặt cầu có tâm là trung điểm O của đoạn AB và bán kính r = .
2. Ví dụ minh họa
Ví dụ 1. Cho tứ diện ABCD. Tìm tập hợp tất cả các điểm M trong không gian sao cho
|MA→ + MB→ + MC→ + MD→| = 4 .
A. Mặt nón, bán kính đáy bằng 1.
B. Mặt cầu, bán kính bằng 1.
C. Mặt trụ, bán kính bằng 1.
D. Mặt cầu, bán kính bằng 2.
Hướng dẫn giải:
+ Ta có |MA→ + MB→ + MC→ + MD→| = 4
⇔ |4MG→| = 4 ⇔ MG = 1
(với G là trọng tâm tứ diện ABCD).
+ Vậy tập hợp các điểm M trong không gian thỏa mãn là mặt cầu tâm G bán kính R= 1.
Chọn B.
Ví dụ 2. Cho tứ diện đều ABCD có cạnh bằng a. Tìm tập hợp các điểm M trong khôn gian sao cho:
MA2 + MB2 + MC2 + MD2 ≤ 2a2 (*)
A. Mặt trụ, bán kính bằng .
B. Mặt cầu, bán kính bằng .
C. Khối trụ, bán kính bằng .
D. Khối cầu, bán kính bằng .
Hướng dẫn giải:
Gọi I là trung điểm của cạnh AB, J là trung điểm của CD, K là trung điểm IJ.
Áp dụng định lý trung tuyến trong tam giác ta có:
.
Suy ra
MA2 + MB2 + MC2 + MD2 = 2(MI2 + MJ2) + a2
=
Ta có
=
Suy ra MA2 + MB2 + MC2 + MD2 = 4MK2 +
Do đó:
(*) ⇔
⇔ MK ≤
Vậy tập hợp các điểm M trong không gian là khối cầu tâm K bán kính R =
Chọn D.
Ví dụ 3. Cho mặt cầu S(O; R) và điểm A cố định với OA = d. Qua A, kẻ đường thẳng Δ tiếp xúc với mặt cầu S(O; R) tại M. Công thức nào sau đây được dùng để tính độ dài đoạn thẳng AM?
A. B.
C. D.
Hướng dẫn giải:
Vì Δ tiếp xúc với S(O; R) tại M nên OM ⊥ Δ tại M.
Xét tam giác OMA vuông tại M, ta có:
AM2 = OA2 - OM2 = d2 - R2
⇒ AM =
Chọn B
Cách tính diện tích mặt cầu, thể tích khối cầu
1. Phương pháp giải
Cho mặt cầu có bán kính R, khi đó:
• Diện tích mặt cầu: S = 4πR2 .
• Thể tích khối cầu V = πR3.
2. Ví dụ minh họa
Ví dụ 1. Mặt cầu có bán kính R√3 có diện tích là:
A. 4√3πR2 . B. 4πR2 . C. 6πR2 . D. 12πR2 .
Hướng dẫn giải:
Áp dụng công thức: S = 4πR2
Diện tích mặt cầu có bán kính R√3 là:
S = 4π(R√3)2 = 12πR2 .
Chọn D.
Ví dụ 2. Cho hình tròn đường kính 4a quay quanh đường kính của nó. Khi đó thể tích khối tròn xoay sinh ra bằng:
A. πa3 B. πa3 C. πa3 D. πa3
Hướng dẫn giải:
Cho hình tròn đường kính 4a quay quanh đường kính của nó ta được khối cầu có đường kính 4a hay bán kính R = 2a.
Thể tích khối cầu là:
V = πR3 = π(2a)3 = πa3 .
Chọn A
Ví dụ 3. Khối cầu ( S) có diện tích mặt cầu bằng (đvdt). Tính thể tích khối cầu.
A. π (đvdt). B. π (đvdt).
C. π (đvdt). D. π (đvdt).
Hướng dẫn giải:
Do khối cầu (S) có diện tích mặt cầu bằng nên ta có:
S = 4πR2 = 16π ⇒ R = 2
Thể tích của khối cầu là:
V = πR3 = π23 = π (đvdt).
Chọn D.
Cách tính diện tích hình trụ, thể tích khối trụ
1. Phương pháp giải
• Diện tích xung quanh của hình trụ là:
Sxq = 2πrh
• Diện tích toàn phần của hình trụ là:
Stp = Sxq + S2day = 2πrh + 2πr2
• Thể tích của khối trụ là: V = Sday.h = 2πr2h
Trong đó, r là bán kính đường tròn đáy của hình trụ.
2. Ví dụ minh họa
Ví dụ 1 Cho hình chữ nhật ABCD có AB = a và góc = 300 . Quay hình chữ nhật này xung quanh cạnh AD. Diện tích xung quanh của hình trụ được tạo thành là:
A. √3πa2 B. 2√3πa2 C. πa2 D. πa2
Hướng dẫn giải:
+ Khi quay hình chữ nhật này xung quanh cạnh AD ta được hình trụ như hình vẽ.
Hình trụ tạo thành có:
+ Bán kính đường tròn đáy là r = AB = a
+ Đường cao của hình trụ là:
h = BC = CD.tan300 =
Suy ra, diện tích xung quanh của hình trụ tạo thành là:
Chọn C.
Ví dụ 2 Một hình tứ diện đều ABCD cạnh a. Xét hình trụ có 1 đáy là đường tròn nội tiếp tam giác ABC và có chiều cao bằng chiều cao hình tứ diện. Diện tích xung quanh của hình trụ đó bằng:
Hướng dẫn giải:
+ Gọi O là tâm của tam giác ABC và M là trung điểm BC. ( khi đó, O là trọng tâm, trực tâm, tâm đường tròn nội tiếp ( ngoại tiếp ) tam giác ABC – vì tam giác ABC đều)
+ Ta có: AM = AM.sinC = a.sin600 =
+ Chiều cao tứ diện
Bán kính đường tròn nội tiếp đáy ABC:
r = OM =
Do đó, diện tích xung quanh của hình trụ tạo thành là:
Chọn C.
Ví dụ 3 Cho hình trụ có hai đáy là hình tròn (O) và (O’). Trên hai đường tròn lấy hai điểm A, B sao cho góc giữa AB và mặt phẳng chứa đường tròn đáy bằng 450 và khoảng cách đến trục OO’ bằng . Biết bán kính đáy bằng a, tính thể tích của khối trụ theo a.
Hướng dẫn giải:
Đặt OO’ = h. Gọi I, E, D lần lượt là trung điểm của BC, BA, OO’.
Ta có: d(AB,OO') = ED = IO' =
Tam giác ABC vuông tại C có B = 450
⇒ tam giác ABC vuông cân
⇒ BC = AC = h
Ta có:
Thể tích khối trụ là: V = πa2.a √2 = πa3√2
Chọn B.
Xem thêm các chuyên đề Toán lớp 12 có trong đề thi THPT Quốc gia khác:
- Ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số
- Hàm số lũy thừa, Hàm số mũ và hàm số logarit
- Nguyên hàm - Tích phân - Ứng dụng
- Số phức
- Khối đa diện
- Phương pháp tọa độ trong không gian
Sách VietJack thi THPT quốc gia 2025 cho học sinh 2k7:
- Giải Tiếng Anh 12 Global Success
- Giải sgk Tiếng Anh 12 Smart World
- Giải sgk Tiếng Anh 12 Friends Global
- Lớp 12 Kết nối tri thức
- Soạn văn 12 (hay nhất) - KNTT
- Soạn văn 12 (ngắn nhất) - KNTT
- Giải sgk Toán 12 - KNTT
- Giải sgk Vật Lí 12 - KNTT
- Giải sgk Hóa học 12 - KNTT
- Giải sgk Sinh học 12 - KNTT
- Giải sgk Lịch Sử 12 - KNTT
- Giải sgk Địa Lí 12 - KNTT
- Giải sgk Giáo dục KTPL 12 - KNTT
- Giải sgk Tin học 12 - KNTT
- Giải sgk Công nghệ 12 - KNTT
- Giải sgk Hoạt động trải nghiệm 12 - KNTT
- Giải sgk Giáo dục quốc phòng 12 - KNTT
- Giải sgk Âm nhạc 12 - KNTT
- Giải sgk Mĩ thuật 12 - KNTT
- Lớp 12 Chân trời sáng tạo
- Soạn văn 12 (hay nhất) - CTST
- Soạn văn 12 (ngắn nhất) - CTST
- Giải sgk Toán 12 - CTST
- Giải sgk Vật Lí 12 - CTST
- Giải sgk Hóa học 12 - CTST
- Giải sgk Sinh học 12 - CTST
- Giải sgk Lịch Sử 12 - CTST
- Giải sgk Địa Lí 12 - CTST
- Giải sgk Giáo dục KTPL 12 - CTST
- Giải sgk Tin học 12 - CTST
- Giải sgk Hoạt động trải nghiệm 12 - CTST
- Giải sgk Âm nhạc 12 - CTST
- Lớp 12 Cánh diều
- Soạn văn 12 Cánh diều (hay nhất)
- Soạn văn 12 Cánh diều (ngắn nhất)
- Giải sgk Toán 12 Cánh diều
- Giải sgk Vật Lí 12 - Cánh diều
- Giải sgk Hóa học 12 - Cánh diều
- Giải sgk Sinh học 12 - Cánh diều
- Giải sgk Lịch Sử 12 - Cánh diều
- Giải sgk Địa Lí 12 - Cánh diều
- Giải sgk Giáo dục KTPL 12 - Cánh diều
- Giải sgk Tin học 12 - Cánh diều
- Giải sgk Công nghệ 12 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 12 - Cánh diều
- Giải sgk Giáo dục quốc phòng 12 - Cánh diều
- Giải sgk Âm nhạc 12 - Cánh diều