Lý thuyết Quan hệ giữa ba cạnh của một tam giác. Bất đẳng thức tam giác hay, chi tiết

Lý thuyết Quan hệ giữa ba cạnh của một tam giác. Bất đẳng thức tam giác hay, chi tiết

A. Lý thuyết

1. Bất đẳng thức tam giác

Toán lớp 7 | Lý thuyết - Bài tập Toán 7 có đáp án

Trong một tam giác, tổng độ dài hai cạnh bất kỳ bao giờ cũng lớn hơn độ dài cạnh còn lại.

Cho tam giác ABC, ta có các bất đẳng thức sau:

• AB + AC > BC hay b + c > a

• AB + BC > AC hay c + a > b

• AC + BC > AB hay b + a > c

2. Hệ quả của bất đẳng thức tam giác

Trong một tam giác, hiệu độ dài hai cạnh bất kỳ bao giờ cũng nhỏ hơn độ dài cạnh còn lại.

Nhận xét: Nếu xét đồng thời cả tổng và hiệu độ dài hai cạnh của một tam giác thì quan hệ giữa các cạnh của nó còn được phát biểu như sau:

Trong một tam giác, độ dài một cạnh bao giờ cũng lớn hơn hiệu và nhỏ hơn tổng các độ dài của hai cạnh còn lại.

Ví dụ: Trong tam giác ABC, với cạnh BC ta có:

|AC - AB| < BC < AC + AB hay |b - c| < a < b + c

Toán lớp 7 | Lý thuyết - Bài tập Toán 7 có đáp án

3. Ví dụ

Ví dụ 1:Một tam giác có độ dài hai cạnh là 2cm và 10cm. Tìm số đo của cạnh thứ ba, biết số đo ấy là một số nguyên tố.

Hướng dẫn giải:

Giả sử độ dài của cạnh thứ ba là x (cm)

Áp dụng bất đẳng thức của tam giác

Ta có: 10 - 2 < x < 10 + 2 ⇒ 8 < x < 12

Vì x là số nguyên tố lớn hơn 8 và nhỏ hơn 12

Nên x = 11

Vậy số đo cạnh thứ ba là 11cm

Ví dụ 2:Cho ΔABC, M là một điểm tùy ý nằm ở miền trong ΔABC. Chứng minh rằng:

MB + MC < AB + AC.

Hướng dẫn giải:

Toán lớp 7 | Lý thuyết - Bài tập Toán 7 có đáp án

Toán lớp 7 | Lý thuyết - Bài tập Toán 7 có đáp án

Ví dụ 3:Cho điểm D nằm trên cạnh BC của ΔABC. Chứng minh rằng:

Toán lớp 7 | Lý thuyết - Bài tập Toán 7 có đáp án

Hướng dẫn giải:

Toán lớp 7 | Lý thuyết - Bài tập Toán 7 có đáp án

Toán lớp 7 | Lý thuyết - Bài tập Toán 7 có đáp án

B. Bài tập

Bài 1: Hãy tìm độ dài các cạnh của một tam giác, biết cạnh thứ nhất gấp rưỡi cạnh thứ hai, cạnh thứ hai gấp rưỡi cạnh thứ ba và nửa chu vi tam giác bằng 9,5cm

Hướng dẫn giải:

Gọi độ dài cạnh thứ ba là x (cm)

Theo bài ra ta có:

Theo độ dài, độ dài cạnh thứ hai là (3/2)x (cm)

Độ dài cạnh thứ nhất làTrắc nghiệm Quan hệ giữa ba cạnh của một tam giác. Bất đẳng thức tam giác - Bài tập Toán lớp 7 chọn lọc có đáp án, lời giải chi tiết

Bất đẳng thức tam giác được thỏa mãn vìTrắc nghiệm Quan hệ giữa ba cạnh của một tam giác. Bất đẳng thức tam giác - Bài tập Toán lớp 7 chọn lọc có đáp án, lời giải chi tiết

Chu vi của tam giác là

Toán lớp 7 | Lý thuyết - Bài tập Toán 7 có đáp án

Vậy độ dài của ba cạnh tam giác là 4cm, 6cm, 9cm

Bài 2: Cho tam giác ABC có AC > AB. Nối A với trung điểm M của BC. Trên tia AM lấy điểm E sao cho M là trung điểm của đoạn AE. Nối C với E.

a) So sánh hai đoạn thẳng AB và CE.

b) Chứng minh:Trắc nghiệm Quan hệ giữa ba cạnh của một tam giác. Bất đẳng thức tam giác - Bài tập Toán lớp 7 chọn lọc có đáp án, lời giải chi tiết

Hướng dẫn giải:

Trắc nghiệm Quan hệ giữa ba cạnh của một tam giác. Bất đẳng thức tam giác - Bài tập Toán lớp 7 chọn lọc có đáp án, lời giải chi tiết

Toán lớp 7 | Lý thuyết - Bài tập Toán 7 có đáp án

Xem thêm các phần lý thuyết, các dạng bài tập Toán lớp 7 có đáp án chi tiết hay khác:

Xem thêm các loạt bài Để học tốt Toán 7 hay khác:

Ngân hàng trắc nghiệm lớp 7 tại khoahoc.vietjack.com

GIẢM GIÁ 75% KHÓA HỌC VIETJACK HỖ TRỢ DỊCH COVID

Phụ huynh đăng ký mua khóa học lớp 7 cho con, được tặng miễn phí khóa ôn thi học kì. Cha mẹ hãy đăng ký học thử cho con và được tư vấn miễn phí. Đăng ký ngay!

Tổng đài hỗ trợ đăng ký khóa học: 084 283 45 85

Học tốt toán 7 - Thầy Lê Tuấn Anh

4.5 (243)

799,000đs

250,000 VNĐ

Học tốt tiếng Anh 7 - Cô Hoài Thu

4.5 (243)

799,000đ

250,000 VNĐ

Học tốt Văn 7 - Cô Lan Anh

4.5 (243)

799,000đ

250,000 VNĐ

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Nhóm học tập facebook miễn phí cho teen 2k8: fb.com/groups/hoctap2k8/

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Loạt bài Lý thuyết - Bài tập Toán lớp 7 có đầy đủ Lý thuyết và các dạng bài có lời giải chi tiết được biên soạn bám sát nội dung chương trình sgk Đại số 7 và Hình học 7.

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.