Bài tập trắc nghiệm Phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử lớp 8 (có đáp án)
Với bài tập trắc nghiệm Phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử lớp 8 có lời giải chi tiết sẽ giúp học sinh ôn tập, biết cách làm Trắc nghiệm Phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử
Bài tập trắc nghiệm Phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử lớp 8 (có đáp án)
Bài 1: Phân tích đa thức a4 + a3 + a3b + a2b thành nhân tử ta được
A. a2(a + b)(a + 1)
B. a(a + b)(a + 1)
C. (a2 + ab)(a + 1)
D. (a + b)(a + 1)
Lời giải
Ta có a4 + a3 + a3b + a2b
= (a4 + a3) + (a3 + a2b)
= a3(a + 1) + a2b(a + b)
= (a + 1)(a3 + a2b) = a2(a + b)(a + 1)
Đáp án cần chọn là: A
Bài 2: Phân tích đa thức thành nhân tử: 5x2 + 10xy – 4x – 8y
A. (5x – 2y)(x + 4y)
B. (5x + 4)(x – 2y)
C. (x + 2y)(5x – 4)
D. (5x – 4)(x – 2y)
Lời giải
5x2 + 10xy – 4x – 8y = (5x2 + 10xy) – (4x + 8y)
= 5x(x + 2y) – 4(x + 2y) = (5x – 4)(x + 2y)
Đáp án cần chọn là: C
Bài 3: Đa thức x2 + x – 2ax – 2a được phân tích thành
A. (x + 2a)(x – 1)
B. (x – 2a)(x + 1)
C. (x + 2a)(x + 1)
D. (x – 2a)(x – 1)
Lời giải
Ta có x2 + x – 2ax – 2a
= (x2 + x) – (2ax + 2a) = x(x + 1) – 2a(x + 1)
= (x – 2a)(x + 1)
Đáp án cần chọn là: B
Bài 4: Đa thức 2a2x – 5by – 5a2y + 2bx được phân tích thành
A. (a2 + b)(5x – 2y)
B. (a2 – b)(2x – 5y)
C. (a2 + b)(2x + 5y)
D. (a2 + b)(2x – 5y)
Lời giải
Ta có 2a2x – 5by – 5a2y + 2bx
= (2a2x – 5a2y) + (2bx – 5by)
= a2(2x – 5y) + b(2x – 5y)
= (a2 + b)(2x – 5y)
Đáp án cần chọn là: D
Bài 5: Cho x2 + ax + x + a = (x + a)(…) Biểu thức thích hợp điền vào dấu … là
A. (x + 1)
B. (x + a)
C. (x + 2)
D. (x – 1)
Lời giải
Ta có x2 + ax + x + a = (x2 + x) + (ax + a)
= x(x + 1) + a(x + 1) = (x + a)(x + 1)
Đáp án cần chọn là: A
Bài 6: Điền vào chỗ trống: 3x2 + 6xy2 – 3y2 + 6x2y = 3(…)(x + y)
A. (x + y + 2xy)
B. (x – y + 2xy)
C. (x – y + xy)
D. (x – y + 3xy)
Lời giải
3x2 + 6xy2 – 3y2 + 6x2y = (3x2 – 3y2) + (6xy2 + 6x2y)
= 3(x2 – y2) + 6xy(y + x) = 3(x – y)(x + y) + 6xy(x + y)
= [3(x – y) + 6xy](x + y) = 3(x – y + 2xy)(x + y)
Vậy chỗ trống là (x – y + 2xy)
Đáp án cần chọn là: B
Bài 7: Chọn câu đúng
A. x3 – 4x2 – 9x + 36 = (x + 3)(x – 2)(x + 2)
B. x3 – 4x2 – 9x + 36 = (x – 3)(x + 3)(x – 4)
C. x3 – 4x2 – 9x + 36 = (x – 9)(x – 2)(x + 2)
D. x3 – 4x2 – 9x + 36 = (x – 3)(x + 3)(x – 2)
Lời giải
Ta có x3 – 4x2 – 9x + 36
= (x3 – 4x2) – (9x – 36)
= x2(x – 4) – 9(x – 4) = (x2 – 9)(x – 4)
= (x – 3)(x + 3)(x – 4)
Đáp án cần chọn là: B
Bài 8: Chọn câu đúng
A. 2a2c2 – 2abc + bd – acd = (2ac – d)(ac – b)
B. 2a2c2 – 2abc + bd – acd = (2ac – d)(ac + b)
C. 2a2c2 – 2abc + bd – acd = (2ac + d)(ac – b)
D. 2a2c2 – 2abc + bd – acd = (2ac + d)(ac + b)
Lời giải
Ta có 2a2c2 – 2abc + bd – acd = 2ac(ac – b) + d(b – ac)
= 2ac(ac – b) – d(ac – b) = (2ac – d)(ac – b)
Đáp án cần chọn là: A
Bài 9: Chọn câu sai
A. ax – bx + ab – x2 = (x + b)(a – x)
B. x2 – y2 + 4x + 4 = (x + y)(x – y + 4)
C. ax + ay – 3x – 3y = (a – 3)(x + y)
D. xy + 1 – x – y = (x – 1)(y – 1)
Lời giải
Ta có
ax – bx + ab – x2 = (ax – x2) + (ab – bx)
= x(a – x) + b(a – x) = (x + b)(a – x) nên A đúng
x2 – y2 + 4x + 4 = (x2 + 4x + 4) – y2
= (x + 2)2 – y2 = (x + 2 + y)(x + 2 – y) nên B sai
ax + ay – 3x – 3y = a(x + y) – 3(x + y)
= (a – 3)(x + y) nên C đúng
xy + 1 – x – y = (xy – x) + (1 – y)
= x(y – 1) – (y – 1) = (x – 1)(y – 1) nên D đúng
Đáp án cần chọn là: B
Bài 10: Cho 56x2 – 45y – 40xy + 63x = (7x – 5y)(mx + n) với m, n Є R. Tìm m và n
A. m = 8; n = 9
B. m = 9; n = 8
C. m = -8; n = 9
D. m = 8; n = -9
Lời giải
Ta có
56x2 – 45y – 40xy + 63x = (56x2 + 63x) – (45y + 40xy)
= 7x(8x + 9) – 5y(8x + 9)
Suy ra m = 8; n = 9
Đáp án cần chọn là: A
Bài 11: Cho ax2 – 5x2 – ax + 5x + a – 5 = (a + m)(x2 – x + n) với với m, n Є R. Tìm m và n
A. m = 5; n = -1
B. m = -5; n = -1
C. m = 5; n = 1
D. m = -5; n = 1
Lời giải
Ta có
ax2 – 5x2 – ax + 5x + a – 5 = x2(a – 5) – x(a – 5) + a – 5
= (a – 5)(x2 – x + 1)
Suy ra m = -5; n = 1
Đáp án cần chọn là: D
Bài 12: Cho x2 – 4y2 – 2x – 4y = (x + 2y)(x – 2y + m) với m Є R. Chọn câu đúng
A. m < 0
B. 1 < m < 3
C. 2 < m < 4
D. m > 4
Lời giải
Ta có x2 – 4y2 – 2x – 4y
= (x2 – 4y2) – (2x + 4y)
= (x – 2y)(x + 2y) – 2(x + 2y)
= (x + 2y)(x – 2y – 2)
Suy ra m = -2
Đáp án cần chọn là: A
Bài 13: Cho x2 – 4xy + 4y2 – 4 = (x – my + 2)(x – 2y – 2) với m Є R. Chọn câu đúng
A. m < 0
B. 1 < m < 3
C. 2 < m < 4
D. m > 4
Lời giải
Ta có
x2 – 4xy + 4y2 – 4 = (x2 – 2.x.2y + (2y)2) – 4
= (x – 2y)2 – 22 = (x – 2y – 2)(x – 2y + 2)
Suy ra m = 2
Đáp án cần chọn là: B
Bài 14: Tìm x biết x4 + 4x3 + 4x2 = 0
A. x = 2; x = -2
B. x = 0; x = 2
C. x = 0; x = -2
D. x = -2
Lời giải
Vậy x = 0; x = -2
Đáp án cần chọn là: C
Bài 15: Tìm giá trị của x thỏa mãn x(2x – 7) – 4x + 14 = 0
Lời giải
Đáp án cần chọn là: C
Bài 16: Có bao nhiêu giá trị của x thỏa mãn x3 + 2x2 – 9x – 18 = 0
A. 1
B. 2
C. 0
D. 3
Lời giải
Vậy x = -2; x = 3; x =-3
Đáp án cần chọn là: D
Bài 17: Có bao nhiêu giá trị của x thỏa mãn x(x – 1)(x + 1) + x2 – 1 = 0
A. 1
B. 2
C. 0
D. 3
Lời giải
Ta có:
x(x – 1)(x + 1) + x2 – 1 = 0
⇔ x(x – 1)(x + 1) + (x2 – 1) = 0
⇔ x(x – 1)(x + 1) + (x – 1)(x + 1) = 0
⇔ (x + 1)(x – 1)(x + 1) = 0
⇔ (x + 1)2(x – 1) = 0
Vậy x = 1; x = -1
Đáp án cần chọn là: B
Bài 18: Cho |x| < 2. Khi đó khẳng định nào sau đây là đúng khi nói về giá trị của biểu thức A = x4 + 2x3 – 8x – 16
A. A > 1
B. A > 0
C. A < 0
D. A ≥ 1
Lời giải
Ta có A = x4 + 2x3 – 8x – 16
= (x4 – 16) + (2x3 – 8x) = (x2 – 4)(x2 + 4) + 2x(x2 – 4)
= (x2 – 4)(x2 + 2x + 4)
Ta có x2 + 2x + 4 = x2 + 2x + 1 + 3 = (x + 1)2 + 3 ≥ 3 > 0, Ɐx
Mà |x| < 2 ⇔ x2 < 4 ⇔ x2 – 4 < 0
Suy ra A = (x2 – 4)(x2 + 2x + 4) < 0 khi |x| < 2
Đáp án cần chọn là: C
Bài 19: Cho x = 10 – y. Khi đó khẳng định nào sau đây là đúng khi nói về giá trị của biểu thức N = x3 + 3x2y + 3xy2 + y3 + x2 + 2xy + y2
A. N > 1200
B. N < 1000
C. N < 0
D. N > 1000
Lời giải
Ta có
N = x3 + 3x2y + 3xy2 + y3 + x2 + 2xy + y2
= (x3 + 3x2y + 3xy2 + y3) + (x2 + 2xy + y2)
= (x + y)3 + (x + y)2 = (x + y)2(x + y + 1)
Từ đề bài x = 10 – y ⇔ x + y = 10. Thay x + y = 10 vào N = (x + y)2(x + y + 1) ta được
N = 102(10 + 1) = 1100
Suy ra N > 1000 khi x = 10 – y
Đáp án cần chọn là: D
Bài 20: Cho ab3c2 – a2b2c3 – a2bc3 = abc2(b + c)(…) Biểu thức thích hợp điền vào dấu … là
A. b – a
B. a – b
C. a + b
D. -a – b
Lời giải
Ta có ab3c2 – a2b2c3 – a2bc3
= abc2(b2 – ab + bc – ac)
= abc2[(b2 – ab) + (bc – ac)]
= abc2[b(b – a) + c(b – a)]
= abc2(b + c)(b – a)
Vậy ta cần điền b – a
Đáp án cần chọn là: A
Bài 21: Tính nhanh: 37.7 + 7.63 – 8.3 – 3.2
A. 700
B. 620
C. 640
D. 670
Lời giải
37.7 + 7.63 – 8.3 – 3.2 = (37.3 + 7.63) – (8.3 + 3.2)
= 7(37 + 63) – 3(8 + 2) = 7.100 – 3.10
= 700 – 30 = 670
Đáp án cần chọn là: D
Bài 22: Tính giá trị của biểu thức A = x2 – 5x + xy – 5y tại x = -5; y = -8
A. 130
B. 120
C. 140
D. 150
Lời giải
A = x2 – 5x + xy – 5y = (x2 + xy) – (5x + 5y) = x(x + y) – 5(x + y)
= (x – 5)(x + y)
Tại x = -5; y = -8 ta có
A = (-5 – 5)(-5 – 8) = (-10)(-13) = 130
Đáp án cần chọn là: A
Bài 23: Tính giá trị của biểu thức A = (x – 1)(x – 2)(x – 3) + (x – 1)(x – 2) + x – 1 tại x = 5
A. A = 20
B. A = 40
C. A = 16
D. A = 28
Lời giải
A = (x – 1)(x – 2)(x – 3) + (x – 1)(x – 2) + x – 1
⇔ A = (x – 1)(x – 2)(x – 3) + (x – 1)(x – 2) + (x – 1)
⇔ A = (x – 1)[(x – 2)(x – 3) + (x – 2) + 1]
⇔ A = (x – 1)[(x – 2)(x – 3 + 1) + 1]
⇔ A = (x – 1)[(x – 2)(x – 2) + 1]
⇔ A = (x – 1)[(x – 2)2 + 1]
Tại x = 5 ta có
A = (5 – 1)[(5 – 2)2 + 1] = 4.(32 + 1) = 4.(9 + 1) = 4.10 = 40
Vậy A = 40
Đáp án cần chọn là: B
Bài 24: Tính giá trị của biểu thức B = x6 – 2x4 + x3 + x2 – x khi x3 – x = 6
A. 36
B. 42
C. 48
D. 56
Lời giải
B = x6 – 2x4 + x3 + x2 – x
⇔ B = x6 – x4 – x4 + x3 + x2 – x
⇔ B = (x6 – x4) – (x4 – x2) + (x3 – x)
⇔ B = x3(x3 – x) – x(x3 – x) + (x3 – x)
⇔ B = (x3 – x + 1)(x3 – x)
Tại x3 – x = 6, ta có B = (6 + 1).6 = 7.6 = 42
Đáp án cần chọn là: B
Bài 25: Với a3 + b3 + c3 = 3abc thì
A. a = b = c
B. a + b + c = 1
C.a = b = c hoặc a + b + c = 0
D. a = b = c hoặc a + b + c = 1
Lời giải
Từ đẳng thức đã cho suy ra a3 + b3 + c3 – 3abc = 0
b3 + c3 = (b + c)(b2 + c2 – bc)
= (b + c)[(b + c)2 – 3bc]
= (b + c)3 – 3bc(b + c)
⇒ a3 + b3 + c3 – 3abc = a3 + (b3 + c3) – 3abc
⇔ a3 + b3 + c3 – 3abc = a3 + (b3 + c3) – 3abc(b + c) – 3abc
⇔ a3 + (b3 + c3) – 3abc = (a + b + c)(a2 – a(b + c) + (b + c)2) – [3bc(b + c) + 3abc]
⇔ a3 + (b3 + c3) – 3abc = (a + b + c)(a2 – a(b + c) + (b + c)2) – 3bc(a + b + c)
⇔ a3 + (b3 + c3) – 3abc = (a + b + c)(a2 – a(b + c) + (b + c)2 – 3bc)
⇔ a3 + (b3 + c3) – 3abc = (a + b + c)(a2 – ab - ac + b2 + 2bc + c2 – 3bc)
⇔ a3 + (b3 + c3) – 3abc = (a + b + c)(a2 + b2 + c2 – ab – ac – bc)
Do đó nếu a3 + (b3 + c3) – 3abc = 0 thì a + b + c = 0 hoặc a2 + b2 + c2 – ab – ac – bc = 0
Mà a2 + b2 + c2 – ab – ac – bc = .[(a – b)2 + (a – c)2 + (b – c)2]
Nếu (a – b)2 + (a – c)2 + (b – c)2 = 0 ⇔ suy ra a = b = c
Vậy a3 + (b3 + c3) = 3abc thì a = b = c hoặc a + b + c = 0
Đáp án cần chọn là: C
Bài 26: Cho ab + bc + ca = 1. Khi đó (a2 + 1)(b2 + 1)(c2 + 1) bằng
A. (a + c + b)2(a + b)2
B. (a + c)2(a + b)2(b +c)
C. (a + c)2 + (a + b)2 + (b + c)2
D. (a + c)2(a + b)2(b + c)2
Lời giải
Vì ab + bc + ca = 1 nên
a2 + 1 = a2 + ab + bc + ca = a(a + b) + c(a + b) = (a + c)(a + b)
b2 + 1 = b2 + ab + bc + ca = b(a + b) + c(a + b) = (b + c)(a + b)
c2 + 1 = c2 + ab + bc + ca = (c2 + bc) + (ab + ac)
= c(c + b) + a(b + c) = (a + c)(b + c)
Từ đó suy ra (a2 + 1)(b2 + 1)(c2 + 1)
= (a + c)(a + b).(b + c)(a + b).(a + c)(b + c)
= (a + c)2(a + b)2(b + c)2
Vậy (a2 + 1)(b2 + 1)(c2 + 1) = (a + c)2(a + b)2(b + c)2
Đáp án cần chọn là: D
Bài 27: Chọn câu đúng
A. x(x + 1)4 + x(x + 1)3 + x(x + 1)2 + (x + 1)2 = (x + 1)5
B. x(x + 1)4 + x(x + 1)3 + x(x + 1)2 + (x + 1)2 = (x + 1)6
C. x(x + 1)4 + x(x + 1)3 + x(x + 1)2 + (x + 1)2 = (x + 1)4(x – 1)
D. x(x + 1)4 + x(x + 1)3 + x(x + 1)2 + (x + 1)2 = (x + 1)4(x + 2)
Lời giải
Ta có
x(x + 1)4 + x(x + 1)3 + x(x + 1)2 + (x + 1)2
= x(x + 1)4 + x(x + 1)3 + (x + 1)2(x + 1)
= x(x + 1)4 + x(x + 1)3 + (x + 1)3
= x(x + 1)4 + (x + 1)3(x + 1)
= x(x + 1)4 + (x + 1)4
= (x + 1)5
Đáp án cần chọn là: A
Bài 28: Có bao nhiêu cặp số nguyên (x; y) thỏa mãn xy = 2(x + y)
A. 6
B. 4
C. 2
D. 5
Lời giải
Ta có xy = 2(x + y) ⇔ 2x + 2y – xy = 0
⇔ 2x – xy + 2y – 4 = -4
⇔ x(2 – y) + 2(y – 2) = -4
⇔ (x + 2)(2 – y) = -4
⇔ (x + 2)(y – 2) = 4
Mà x; y Є Z ⇒ (x + 2); (y – 2) Є Ư(4) = {-1; 1; -2; 2; -4; 4}
Vậy có 6 cặp số (x; y) thỏa mãn điều kiện đề bài
Đáp án cần chọn là: A
Bài 29: Thu gọn đa thức A = (ax + by + cz)2 + (ay – bx)2 + (az – cx)2 + (bz – cy)2 ta được
A. (x2 + y2 + z2) + (a2 + b2 + c2)
B. (x2 + y2 + z2)(a2 + b2 + c2)
C. (x2 + y2 + z2)(a + b + c)2
D. (x + y + z)(a2 + b2 + c2)
Lời giải
Ta có
A = (ax + by + cz)2 + (ay – bx)2 + (az – cx)2 + (bz – cy)2
= a2x2 + b2y2 + c2z2 + 2abxy + 2acxz + 2bcyz + a2y2 – 2abxy + b2x2 + a2z2 – 2acxz + c2z2 + b2z2 – 2bczy + c2y2
= a2x2 + b2y2 + c2z2 + a2y2 + b2x2 + a2z2 + c2x2 + b2z2 + c2y2
= (a2x2 + b2x2 + c2x2) + (b2y2 + a2y2 + c2y2) + (b2z2 + a2z2 + c2z2)
= x2(a2 + b2 + c2) + y2(a2 + b2 + c2) + z2(a2 + b2 + c2)
= (x2 + y2 + z2)(a2 + b2 + c2)
Đáp án cần chọn là: B
Xem thêm các bài tập trắc nghiệm Toán lớp 8 có đáp án chi tiết hay khác:
- Trắc nghiệm Phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức
- Trắc nghiệm Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp
- Trắc nghiệm Chia đơn thức cho đơn thức
- Trắc nghiệm Chia đa thức một biến đã sắp xếp
- Bài tập ôn tập Chương 1 Đại số 8
Xem thêm các loạt bài Để học tốt Toán lớp 8 hay khác:
Tủ sách VIETJACK shopee lớp 6-8 cho phụ huynh và giáo viên (cả 3 bộ sách):
Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.
Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:Loạt bài Lý thuyết & 700 Bài tập Toán lớp 8 có lời giải chi tiết có đầy đủ Lý thuyết và các dạng bài có lời giải chi tiết được biên soạn bám sát nội dung chương trình sgk Đại số 8 và Hình học 8.
Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.
- Giải Tiếng Anh 8 Global Success
- Giải sgk Tiếng Anh 8 Smart World
- Giải sgk Tiếng Anh 8 Friends plus
- Lớp 8 - Kết nối tri thức
- Soạn văn 8 (hay nhất) - KNTT
- Soạn văn 8 (ngắn nhất) KNTT
- Giải sgk Toán 8 - KNTT
- Giải sgk Khoa học tự nhiên 8 - KNTT
- Giải sgk Lịch Sử 8 - KNTT
- Giải sgk Địa Lí 8 - KNTT
- Giải sgk Giáo dục công dân 8 - KNTT
- Giải sgk Tin học 8 - KNTT
- Giải sgk Công nghệ 8 - KNTT
- Giải sgk Hoạt động trải nghiệm 8 - KNTT
- Giải sgk Âm nhạc 8 - KNTT
- Lớp 8 - Chân trời sáng tạo
- Soạn văn 8 (hay nhất) - CTST
- Soạn văn 8 (ngắn nhất) - CTST
- Giải sgk Toán 8 - CTST
- Giải sgk Khoa học tự nhiên 8 - CTST
- Giải sgk Lịch Sử 8 - CTST
- Giải sgk Địa Lí 8 - CTST
- Giải sgk Giáo dục công dân 8 - CTST
- Giải sgk Tin học 8 - CTST
- Giải sgk Công nghệ 8 - CTST
- Giải sgk Hoạt động trải nghiệm 8 - CTST
- Giải sgk Âm nhạc 8 - CTST
- Lớp 8 - Cánh diều
- Soạn văn 8 Cánh diều (hay nhất)
- Soạn văn 8 Cánh diều (ngắn nhất)
- Giải sgk Toán 8 - Cánh diều
- Giải sgk Khoa học tự nhiên 8 - Cánh diều
- Giải sgk Lịch Sử 8 - Cánh diều
- Giải sgk Địa Lí 8 - Cánh diều
- Giải sgk Giáo dục công dân 8 - Cánh diều
- Giải sgk Tin học 8 - Cánh diều
- Giải sgk Công nghệ 8 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 8 - Cánh diều
- Giải sgk Âm nhạc 8 - Cánh diều