15 Bài tập Hình cầu, Diện tích mặt cầu và thể tích hình cầu lớp 9 (có đáp án)
Với 15 Bài tập Hình cầu, Diện tích mặt cầu và thể tích hình cầu lớp 9 có lời giải chi tiết sẽ giúp học sinh ôn tập, biết cách làm Bài tập Hình cầu, Diện tích mặt cầu và thể tích hình cầu.
15 Bài tập Hình cầu, Diện tích mặt cầu và thể tích hình cầu lớp 9 (có đáp án)
Câu 1: Cho hình cầu có đường kính d = 6cm. Diện tích mặt cầu là:
A. 36π (cm2)
B. 9π (cm2)
C. 12π (cm2)
D. 36π (cm2)
Lời giải:
Chọn đáp án A.
Câu 2: Cho mặt cầu có thể tích V = 288π (cm3). Tính đường kính mặt cầu:
A. 6cm
B. 12cm
C. 8cm
D. 16cm
Lời giải:
Chọn đáp án B.
Câu 3: Cho mặt cầu có số đo diện tích bằng số đo thể tích. Tính bán kính mặt cầu:
A. 3
B. 6
C. 9
D. 12
Lời giải:
Từ giả thiết ta có:
Chọn đáp án A.
Câu 4: Cho hình cầu có bán kính 3cm. Một hình nón cũng có bán kính đáy bằng 3cm và có diện tích toàn phần bằng diện tích mặt cầu. Tính chiều cao của hình nón:
A. 3
B. 6√3
C. 72
D. 6√2
Lời giải:
Gọi l là độ dài đường sinh của hình nón.
Vì bán kính hình cầu và bán kính đáy của hình nón bằng nhau nên từ giả thiết ta có:
Chọn đáp án D.
Câu 5: Cho hình cầu có diện tích mặt cầu là 64π (cm2). Tính thể tích khối cầu?
Lời giải:
Ta có:
Chọn đáp án A.
Câu 6: Cho hình cầu có thể tích là: ,tính diện tích mặt cầu?
A. 50π (cm2)
B. 100π (cm2)
C. 25π (cm2)
D. 75π (cm2)
Lời giải:
Ta có:
Chọn đáp án B.
Câu 7: Cho hình nón có bán kính đáy là 4cm và chiều cao 6cm. Thể tích của một hình cầu bằng thể tích hình nón. Tính bán kính hình cầu?
Lời giải:
Chọn đáp án C.
Câu 8: Cho một hình trụ có bán kính đường tròn đáy là 3cm và chiều cao h = 4cm. Một hình cầu có diện tích bằng diện tích xung quang của hình trụ. Tính bán kính của hình cầu?
A. R = 3cm
B. R = 2cm
C. R = √3 cm
D. R = √6 cm
Lời giải:
Chọn đáp án D.
Câu 9: Cho hình trụ có bán kính đáy là 4cm . Một hình cầu có diện tích mặt cầu bằng diện tích hai đáy của hình trụ.Tính bán kính hình cầu?
A. R = 3cm
B. R = 4cm
C. R = 2√2 cm
D. R = 3√2 cm
Lời giải:
Chọn đáp án C.
Câu 10: Một hình cầu có thể tích là cm3 . Tính diện tích của mặt cầu?
A. 32π
B. 16π
C. 48π
D. 64π
Lời giải:
Chọn đáp án D.
Câu 11: Cho một hình cầu nội tiếp trong hình trụ. Biết rằng đường kính đáy và chiều cao của hình trụ bằng nhau và bằng đường kính của hình cầu. Tính tỉ số giữa thể tích hình cầu và thể tích hình trụ
Lời giải:
Vì đường kính đáy và chiều cao của hình trụ bằng nhau và bằng đường kính hình cầu nên h = 2R với R là bán kính hình cầu và cũng là bán kính đáy của hình trụ
Đáp án cần chọn là: A
*Chú ý: Một số em có thể tính nhầm thành tỉ số giữa thể tích khối trụ và thể tích khối cầu dẫn đến ra đáp án sai là B
Câu 12: Cho một hình cầu nội tiếp trong hình trụ. Biết rằng chiều cao của hình trụ bằng ba lần bán kính đáy bà bán kính đáy hình trụ bằng bán kính của hình cầu. Tính tỉ số giữa thể tích hình cầu và thể tích hình trụ
Lời giải:
Từ đề bài suy ra chiều cao của hình trụ là h = 3R với R là bán kính hình cầu và cũng là bán kính đáy của hình trụ
Đáp án cần chọn là: B
*Chú ý: Một số em có thể tính nhầm thành tỉ số giữa thể tích khối trụ và thể tích khối cầu dẫn đến ra đáp án sai là C
Câu 13: Cho một hình cầu và một hình lập phương ngoại tiếp nó. Tính tỉ số giữa diện tích mặt cầu và diện tích toàn phần của hình lập phương
Lời giải:
Vì hình cầu nội tiếp hình lập phương nên bán kính hình cầu R = với a là cạnh hình lập phương
Khi đó ta có diện tích mặt cầu
Diện tích toàn phần của hình lập phương Stp = 6a2
Tỉ số giữa diện tích mặt cầu và diện tích toàn phần của hình lập phương là
Đáp án cần chọn là: C
*Chú ý: Một số em có thể quên mất số trong khi tính diện tích mặt cầu nên ra tỉ số sai là 1/6 dẫn đến chọn đáp án B sai.
Câu 14: Cho một hình cầu và một hình lập phương ngoại tiếp nó.Nếu diện tích toàn phần của hình lập phương là 24cm2 thì diện tích mặt cầu là:
A. 4π
B. 4
C. 2π
D. 2
Lời giải:
Vì hình cầu nội tiếp hình lập phương nên bán kính hình cầu R = với a là cạnh hình lập phương
Diện tích toàn phần của hình lập phương Stp = 6a2 = 24 ⇔ a = 2cm
Khi đó ta có diện tích mặt cầu S = 4πR2 = 4π.12 = 4π (cm2)
Đáp án cần chọn là: A
*Chú ý: Một số em có thể quên mất số 4 trong khi tính diện tích mặt cầu nên chọn đáp án B sai
Câu 15: Cho tam giác ABC vuông cân tại A có cạnh góc vuông bằng a. Tính diện tích mặt cầu được tạo thành khi quay nửa đường tròn ngoại tiếp tam giác ABC một vòng quanh cạnh BC
Lời giải:
Vì tam giác ABC vuông tại A nên có đường tròn ngoại tiếp là đường tròn đường kính BC
Bán kính đường tròn ngoại tiếp tam giác là
Theo định lý Pytago ta có BC2 = AB2 + AC2 = 2a2
Khi quay nửa đường tròn ngoại tiếp tam giác ABC một vòng quanh cạnh BC ta được hình cầu có bán kính nên diện tích mặt cầu là
Đáp án cần chọn là: A
*Chú ý: Một số em có thể sử dụng sai công thức diện tích mặt cầu S = R2 nên chọn đáp án B sai
Xem thêm lý thuyết và các dạng bài tập Toán lớp 9 có lời giải hay khác:
- Lý thuyết Bài 1: Hình Trụ - Diện tích xung quanh và thể tích của hình trụ (hay, chi tiết)
- Trắc nghiệm Bài 1 (có đáp án): Hình Trụ - Diện tích xung quanh và thể tích của hình trụ
- Lý thuyết Bài 2: Hình nón - Hình nón cụt - Diện tích xung quanh và thể tích của hình nón, hình nón cụt (hay, chi tiết)
- Trắc nghiệm Bài 2 (có đáp án): Hình nón - Hình nón cụt - Diện tích xung quanh và thể tích của hình nón, hình nón cụt
- Tổng hợp lý thuyết Chương 4 Hình học 9 (hay, chi tiết)
- Tổng hợp Trắc nghiệm Chương 4 Hình học 9 (có đáp án)
Tủ sách VIETJACK luyện thi vào 10 cho 2k10 (2025):
Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.
Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:Loạt bài Chuyên đề: Lý thuyết - Bài tập Toán lớp 9 Đại số và Hình học có đáp án có đầy đủ Lý thuyết và các dạng bài được biên soạn bám sát nội dung chương trình sgk Đại số 9 và Hình học 9.
Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.
- Giải Tiếng Anh 9 Global Success
- Giải sgk Tiếng Anh 9 Smart World
- Giải sgk Tiếng Anh 9 Friends plus
- Lớp 9 Kết nối tri thức
- Soạn văn 9 (hay nhất) - KNTT
- Soạn văn 9 (ngắn nhất) - KNTT
- Giải sgk Toán 9 - KNTT
- Giải sgk Khoa học tự nhiên 9 - KNTT
- Giải sgk Lịch Sử 9 - KNTT
- Giải sgk Địa Lí 9 - KNTT
- Giải sgk Giáo dục công dân 9 - KNTT
- Giải sgk Tin học 9 - KNTT
- Giải sgk Công nghệ 9 - KNTT
- Giải sgk Hoạt động trải nghiệm 9 - KNTT
- Giải sgk Âm nhạc 9 - KNTT
- Giải sgk Mĩ thuật 9 - KNTT
- Lớp 9 Chân trời sáng tạo
- Soạn văn 9 (hay nhất) - CTST
- Soạn văn 9 (ngắn nhất) - CTST
- Giải sgk Toán 9 - CTST
- Giải sgk Khoa học tự nhiên 9 - CTST
- Giải sgk Lịch Sử 9 - CTST
- Giải sgk Địa Lí 9 - CTST
- Giải sgk Giáo dục công dân 9 - CTST
- Giải sgk Tin học 9 - CTST
- Giải sgk Công nghệ 9 - CTST
- Giải sgk Hoạt động trải nghiệm 9 - CTST
- Giải sgk Âm nhạc 9 - CTST
- Giải sgk Mĩ thuật 9 - CTST
- Lớp 9 Cánh diều
- Soạn văn 9 Cánh diều (hay nhất)
- Soạn văn 9 Cánh diều (ngắn nhất)
- Giải sgk Toán 9 - Cánh diều
- Giải sgk Khoa học tự nhiên 9 - Cánh diều
- Giải sgk Lịch Sử 9 - Cánh diều
- Giải sgk Địa Lí 9 - Cánh diều
- Giải sgk Giáo dục công dân 9 - Cánh diều
- Giải sgk Tin học 9 - Cánh diều
- Giải sgk Công nghệ 9 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 9 - Cánh diều
- Giải sgk Âm nhạc 9 - Cánh diều
- Giải sgk Mĩ thuật 9 - Cánh diều