15 Bài tập Nhắc lại và bổ sung các khái niệm về hàm số lớp 9 (có đáp án)
Với 15 Bài tập Nhắc lại và bổ sung các khái niệm về hàm số lớp 9 có lời giải chi tiết sẽ giúp học sinh ôn tập, biết cách làm Bài tập Nhắc lại và bổ sung các khái niệm về hàm số.
15 Bài tập Nhắc lại và bổ sung các khái niệm về hàm số lớp 9 (có đáp án)
Câu 1: Cho hàm số y = f(x) xác định trên D . Với x1, x2 ∈ D; x1 < x2 khẳng định nào sau đây là đúng?
A. f(x1) < f(x2) thì hàm số đồng biến trên
B. f(x1) < f(x2) thì hàm số nghịch biến trên
C. f(x1) > f(x2) thì hàm số đồng biến trên
D. f(x1) = f(x2) thì hàm số đồng biến trên
Lời giải:
Cho hàm số y = f(x) xác định trên tập D. Khi đó:
• Hàm số đồng biến trên D ⇔ ∀ x1, x2 ∈ D : x1 < x2 ⇒ f(x1) < f(x2)
• Hàm số nghịch biến trên D ⇔ ∀ x1, x2 ∈ D : x1 < x2 ⇒ f(x1) > f(x2)
Chọn đáp án A.
Câu 2: Cho hàm số f(x) = 3 - x 2 . Tính f(-1)
A. -2
B. 2
C. 1
D. 0
Lời giải:
Thay x = -1 vào hàm số ta được: f(x) = 3 -(-1)2 = 2 .
Chọn đáp án B.
Câu 3: Cho hàm số f(x) = x3 - 3x - 2. Tính 2.f(3)
A. 16
B. 8
C. 32
D. 64
Lời giải:
Thay y = 3 vào hàm số ta được: f(3) = (3)3 - 3.3 - 2 = 16 ⇒ 2.f(3) = 2.16 = 32.
Chọn đáp án C.
Câu 4: Cho hai hàm số f(x) = -2x3 và h(x) = 10 - 3x . So sánh f(-2) và h(-1)
A. f(-2) < h(-1)
B. f(-2) ≤ h(-1)
C. f(-2) = h(-1)
D. f(-2) > h(-1)
Lời giải:
Thay x = -2 vào hàm số f(x) = -2x3 ta được f(-2) = -2.(-2) = 16 .
Thay x = -1 vào hàm số h(x) = 10 - 3x ta được h(-1) = 10 - 3.(-1) = 13.
Nên f(-2) > h(-1) .
Chọn đáp án D.
Câu 5: Cho hai hàm số f(x) = x2 và g(x) = 5x - 4 . Có bao nhiêu giá trị của a để f(a) = g(a)
A. 0
B. 1
C. 2
D. 3
Lời giải:
Ta có:
Vậy có 2 giá trị của thỏa mãn.
Chọn đáp án C.
Câu 6: Cho hàm số y = 2x + 2. Tìm khẳng định đúng?
A. Hàm số đã cho đồng biến trên R.
B. Hàm số đã cho nghich biến trên R.
C. Điểm A(1; 3) thuộc đồ thị hàm số .
D. Tất cả sai.
Lời giải:
Với hai số thực bất kì x1; x2 . Giả sử x1 < x2 , suy ra:
2x1 < 2x2 ⇒ 2x1 + 2 < 2x2 + 2
Hay f(x1) < f(x2)(f(x1) = 2x1 + 2; f(x2) = 2x2 + 2)
Do đó, hàm số đã cho đồng biến trên R,
Chọn đáp án A.
Câu 7: Cho hàm số y = -3x +100. Tìm khẳng định đúng?
A. Hàm số đã cho nghịch biến trên R.
B. Hàm số đã cho đồng biến trên R.
C. Điểm A(0; -3 ) thuộc đồ thị hàm số.
D. Tất cả sai.
Lời giải:
Với hai số thực bất kì x1; x2 . Giả sử x1 < x2 , suy ra:
-3x1 > -3x2 ⇒ -3x1 + 100 > -3x2 + 100
Hay f(x1) > f(x2); (f(x1) = -3x1 + 100; f(x2) = -3x2 + 100)
Do đó, hàm số đã cho nghịch biến trên R,
Chọn đáp án A.
Câu 8: Hàm số xác định với:
A. x ≥ 0
B. ∀ x ∈R
C. x > 0
D. x < 0
Lời giải:
Ta có: x2 ≥ 0 ∀ x ⇒ x2 + 1 > 0 ∀ x
Do đó, hàm số luôn xác định với mọi giá trị của x.
Chọn đáp án B.
Câu 9: Cho hàm số y = 2x+ 100 giá trị của y là bao nhiêu khi x=0
A.0
B.2
C.100
D.102
Lời giải:
Ta có giá trị tương ứng của hàm số khi x= 0 là:
y = f(0) = 2.0 +100 = 100
Chọn đáp án C.
Câu 10: Trong các hàm số sau đâu là hàm hằng
A.y = x
B.y = 2x + 1
C. y = 2
D. y = 5/x
Lời giải:
Xét hàm số y =2. Với mọi giá trị của x nhưng y luôn nhận giá trị là 2 nên hàm số y =2 là hàm hằng.
Chọn đáp án C.
Câu 11: Cho hai hàm số f(x) = 2x2 và g(x) = 4x – 2. Có bao nhiêu giá trị của a để f(a) = g(a)
A. 0
B. 1
C. 2
D. 3
Lời giải:
Thay x = a vào hai hàm số ta được f(a) = 2a2, g(a) = 4a – 2
Khi đó:
Vậy có một giá trị của a thỏa mãn yêu cầu đề bài.
Đáp án cần chọn là: B
Câu 12: Cho hàm số f(x) = 5,5x có đồ thị (C). Điểm nào sau đây thuộc đồ thị hàm số (C).
A. M (0; 1)
B. N (2; 11)
C. P (−2; 11)
D. P (−2; 12)
Lời giải:
Lần lượt thay tọa độ các điểm M, N, P, Q vào hàm số f(x) = 5,5x ta được:
+) Với M (0; 1), thay x = 0; y = 1 ta được 1 = 5,5.0 ⇔ 1 = 0 (Vô lý) nên M ∉ (C)
+) Với N (2; 11), thay x = 2; y = 11 ta được 2.5,5 = 11 ⇔ 11 = 11 (luôn đúng) nên N ∈ (C)
+ Với P (−2; 11), thay x = −2; y = 11 ta được 11 = 5,5.(−2) ⇔ 11 = −11 (vô lý) nên P ∉ (C)
+) Với Q (−2; 12), thay x = −2; y = 12 ta được 12 = 5,5.(−2) ⇔ 12 = −11 (vô lý) nên Q ∉ (C)
Đáp án cần chọn là: B
Câu 13: Cho hàm số f(x) = 3x – 2 có đồ thị (C). Điểm nào sau đây thuộc đồ thị hàm số (C).
A. M (0; 1)
B. N (2; 3)
C. P (−2; −8)
D. Q (−2; 0)
Lời giải:
Lần lượt thay tọa độ các điểm M, N, P, Q vào hàm số f(x) = 3x – 2 ta được:
+) Với M (0; 1); thay x = 0; y = 1 ta được 1 = 3.0 – 2 ⇔ 1 = −2 (vô lý) nên M ∉ (C)
+) Với N (2; 3), thay x =2; y = 3 ta được 3 = 3.2 – 2 ⇔ 3 = 4 (vô lý) nên N ∉ (C)
+) Với P (−2; −8), thay x = −2; y = −8 ta được −8 = 3. (−2) – 2 ⇔ −8 = −8 (luôn đúng) nên P ∈ (C)
+ ) Với Q (−2; 0), thay x = −2; y = 0 ta được 0 = 3. (−2) – 2 ⇔ 0 = −8 (vô lý) nên Q ∉ (C)
Đáp án cần chọn là: C
Câu 14: Cho hàm số có đồ thị (C) và các điểm M (0; 4); P (4; −1); Q (−4; 1); A (8; −2); O (0; 0). Có bao nhiêu điểm trong số các điểm trên thuộc đồ thị hàm số (C).
A. 4
B. 3
C. 2
D. 1
Lời giải:
Lần lượt thay tọa độ các điểm M, O, P, Q, A vào hàm số ta được:
Vậy có bốn điểm thuộc đồ thị (C) trong số các điểm đã cho.
Đáp án cần chọn là: A
Câu 15: Cho hàm số f(x) = 3x có đồ thị (C) và các điểm M (1; 1); P (−1; −3); Q (3; 9); A (−2; 6); O (0; 0). Có bao nhiêu điểm trong số các điểm trên thuộc đồ thị hàm số (C).
A. 4
B. 3
C. 2
D. 1
Lời giải:
Lần lượt thay tọa độ các điểm M, O, P, Q, A vào hàm số f(x) = 3x ta được:
+) Với M (1; 1), thay x = 1; y = 1 ta được 1 = 3.1 ⇔ 1 = 3 (vô lý) nên M ∉ (C)
+) Với O (0; 0), thay x = 0; y = 0 ta được 0 = 3.0 ⇔ 0 = 0 (luôn đúng) nên O ∈ (C)
+) Với P (−1; −3), thay x = −1; y = −3 ta được −3 = 3.(−1) ⇔ −3 = −3 (luôn đúng) nên P (C)
+) Với Q (3; 9), thay x = 3; y = 9 ta được 9 = 3.3 ⇔ 9 = 9 (luôn đúng) nên Q ∈ (C)
+) Với M (−2; 6), thay x = −2; y = 6 ta được 6 = 3.(−2) ⇔ 6 = −6 (vô lý) nên A ∉ (C)
Vậy có ba điểm thuộc đồ thị (C) trong số các điểm đã cho.
Đáp án cần chọn là: B
Xem thêm lý thuyết và các dạng bài tập Toán lớp 9 có lời giải hay khác:
- Lý thuyết Bài 2: Hàm số bậc nhất (hay, chi tiết)
- Trắc nghiệm Bài 2 (có đáp án): Hàm số bậc nhất
- Lý thuyết Bài 3: Đồ thị của hàm số y = ax + b (hay, chi tiết)
- Trắc nghiệm Bài 3 (có đáp án): Đồ thị của hàm số y = ax + b
- Lý thuyết Bài 4: Đường thẳng song song và đường thẳng cắt nhau (hay, chi tiết)
- Trắc nghiệm Bài 4 (có đáp án): Đường thẳng song song và đường thẳng cắt nhau
Tủ sách VIETJACK luyện thi vào 10 cho 2k10 (2025):
Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.
Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:Loạt bài Chuyên đề: Lý thuyết - Bài tập Toán lớp 9 Đại số và Hình học có đáp án có đầy đủ Lý thuyết và các dạng bài được biên soạn bám sát nội dung chương trình sgk Đại số 9 và Hình học 9.
Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.
- Giải Tiếng Anh 9 Global Success
- Giải sgk Tiếng Anh 9 Smart World
- Giải sgk Tiếng Anh 9 Friends plus
- Lớp 9 Kết nối tri thức
- Soạn văn 9 (hay nhất) - KNTT
- Soạn văn 9 (ngắn nhất) - KNTT
- Giải sgk Toán 9 - KNTT
- Giải sgk Khoa học tự nhiên 9 - KNTT
- Giải sgk Lịch Sử 9 - KNTT
- Giải sgk Địa Lí 9 - KNTT
- Giải sgk Giáo dục công dân 9 - KNTT
- Giải sgk Tin học 9 - KNTT
- Giải sgk Công nghệ 9 - KNTT
- Giải sgk Hoạt động trải nghiệm 9 - KNTT
- Giải sgk Âm nhạc 9 - KNTT
- Giải sgk Mĩ thuật 9 - KNTT
- Lớp 9 Chân trời sáng tạo
- Soạn văn 9 (hay nhất) - CTST
- Soạn văn 9 (ngắn nhất) - CTST
- Giải sgk Toán 9 - CTST
- Giải sgk Khoa học tự nhiên 9 - CTST
- Giải sgk Lịch Sử 9 - CTST
- Giải sgk Địa Lí 9 - CTST
- Giải sgk Giáo dục công dân 9 - CTST
- Giải sgk Tin học 9 - CTST
- Giải sgk Công nghệ 9 - CTST
- Giải sgk Hoạt động trải nghiệm 9 - CTST
- Giải sgk Âm nhạc 9 - CTST
- Giải sgk Mĩ thuật 9 - CTST
- Lớp 9 Cánh diều
- Soạn văn 9 Cánh diều (hay nhất)
- Soạn văn 9 Cánh diều (ngắn nhất)
- Giải sgk Toán 9 - Cánh diều
- Giải sgk Khoa học tự nhiên 9 - Cánh diều
- Giải sgk Lịch Sử 9 - Cánh diều
- Giải sgk Địa Lí 9 - Cánh diều
- Giải sgk Giáo dục công dân 9 - Cánh diều
- Giải sgk Tin học 9 - Cánh diều
- Giải sgk Công nghệ 9 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 9 - Cánh diều
- Giải sgk Âm nhạc 9 - Cánh diều
- Giải sgk Mĩ thuật 9 - Cánh diều