Bài toán thực tế lớp 9 Bất đẳng thức và bất phương trình bậc nhất một ẩn

Bài toán thực tế lớp 9 Bất đẳng thức và bất phương trình bậc nhất một ẩn có lời giải chương trình mới dùng chung cho ba sách Kết nối tri thức, Chân trời sáng tạo, Cánh diều với bài tập đa dạng giúp Giáo viên có thêm tài liệu giảng dạy các dạng toán thực tế lớp 9.

Bài toán thực tế lớp 9 Bất đẳng thức và bất phương trình bậc nhất một ẩn

Xem thử

Chỉ từ 200k mua trọn bộ Chuyên đề, các dạng Toán thực tế lớp 9 chương trình mới bản word trình bày đẹp mắt, chỉnh sửa dễ dàng:

Quảng cáo

A. KIẾN THỨC CƠ BẢN CẦN NẮM

1. Nhắc lại về thứ tự trong tập hợp số thực

Ta có các kết quả sau:

• Trên trục số nằm ngang, nếu số thực a nằm bên trái số thực b thì a < b hay b > a.

Bài toán thực tế lớp 9 Bất đẳng thức và bất phương trình bậc nhất một ẩn

Tổng của hai số thực dương là số thực dương.

Tổng của hai số thực âm là số thực âm.

• Với hai số thực a, b, ta có:

o ab > 0 khi a, b cùng dương hoặc cùng âm (hay a, b cùng dấu) và ngược lại;

o ab < 0 khi a, b trái dấu và ngược lại.

• Với mỗi số thực a, ta có a20. Ngoài ra, a2=0 khi a = 0 và ngược lại.

• Với a, b là hai số thực dương, nếu a > b thì a>b và ngược lại.

2. Bất đẳng thức

• Khái niệm: Ta gọi hệ thức dạng a < b (hay a>b,ab,ab) là bất đẳng thức và gọi a là vế trái, b là vế phải của bất đẳng thức.

Quảng cáo

• Tính chất:

o Nếu a > b thì a+c>b+c với mọi số thực c.

o Nếu a > b thì ac>bc với c > 0

o Nếu a > b thì ac<bc với c < 0.

o Nếu a > bb > c thì a > c.

3. Mở đầu về bất phương trình một ẩn

• Một bất phương trình với ẩn x có dạng Ax>Bx (hoặc Ax<Bx,AxBx, AxBx) trong đó vế trái Ax và vế phải Bx là hai biểu thức của cùng một biến x.

• Khi thay giá trị x = a vào bất phương trình với ẩn x, ta được một khẳng định đúng thì số a (hay giá trị x = a) gọi là nghiệm của bất phương trình đó.

4. Bất phương trình bậc nhất một ẩn

• Định nghĩa: Bất phương trình dạng ax+b>0 (hoặc ax+b<0, ax+b0, ax+b0) với a, b là hai số đã cho và a0 được gọi là bất phương trình bậc nhất một ẩn.

Quảng cáo

• Cách giải:

Bất phương trình ax+b>0 (với a>0) được giải như sau:

ax+b>0ax>bx>ba.

Vậy nghiệm của bất phương trình đã cho là: x>ba.

Bất phương trình ax+b>0 (với a<0) được giải như sau:

ax+b>0ax>bx<ba.

Vậy nghiệm của bất phương trình đã cho là: x<ba.

Chú ý: Các bất phương trình bậc nhất ax+b<0, ax+b0, ax+b0 với a, b là hai số đã cho và được giải bằng cách tương tự.

B. BÀI TẬP VẬN DỤNG

Câu 1: Khi đi trên tuyến cao tốc Thành phố Hồ Chí Minh - Trung Lương, chúng ta thấy biển báo giao thông báo hiệu giới hạn tốc độ mà xe ô tô được phép đi trong điều kiện bình thường. Hãy viết các bất đẳng thức để mô tả tốc độ cho phép của ô tô

Quảng cáo

a) Ở làn ngoài cùng bên trái và ở làn giữa;

b) Ở làn ngoài cùng bên phải.

Bài toán thực tế lớp 9 Bất đẳng thức và bất phương trình bậc nhất một ẩn

Lời giải

Gọi x(km/h) là tốc độ cho phép của ô tô trên cao tốc Thành phố Hồ Chí Minh Trung Lương trong điều kiện bình thường. Khi đó:

a) 60xx100.

b) 50xx80.

Câu 2: Viết bất đẳng thức để mô tả tình huống sau:

a) Bạn phải ít nhất 18 tuổi mới được đi bầu cử đại biểu Quốc hội.

b) Một thang máy chở được tối đa 700 kg.

c) Bạn phải mua hàng có tổng giá trị ít nhất 1 triệu đồng mới được giảm giá.

d) Bạn phải ném vào rổ ít nhất 5 quả bóng mới vào được đội tuyển bóng rổ.

Lời giải

a) Gọi t là tuổi của một người. Để người đó được đi bầu cử đại biểu Quốc hội thì t18.

b) Gọi x (kg) là khối lượng hàng hoá thang máy chở được, khi đó x700.

c) Gọi y (đồng) là số tiền bạn mua hàng. Để được giảm giá thì y1000000.

d) Gọi z là số bóng bạn ném được vào rổ, để được vào đội tuyển bóng rổ thì z5.

Câu 3: Dùng các dấu >,<,, để diễn tả:

a) Giá bán thấp nhất T của một chiếc điện thoại là 6 triệu đồng.

b) Điểm trung bình tối thiểu G để đạt học lực giỏi là 8.

c) Thời gian tối đa t để hoàn thành một dự án là 12 tháng.

Lời giải

a) T6 (triệu đồng);

b) G8 (điểm);

c) t12 (tháng).

Câu 4: Dùng kí hiệu >,<,, để diễn tả:

a) Tốc độ v đúng quy định với biển báo giao thông ở Hình 4a.

b) Trọng tải P của toàn bộ xe khi đi qua cầu đúng quy định với biển báo giao thông ở Hình 4b.

Bài toán thực tế lớp 9 Bất đẳng thức và bất phương trình bậc nhất một ẩn

Lời giải

a) Để diễn tả tốc độ v đúng quy định với biển báo giao thông ở Hình 4a, ta có bất đẳng thức: v70.

b) Để diễn tả trọng tải P của toàn bộ xe khi đi qua cầu đúng quy định với biển báo giao thông ở Hình 4b, ta có bất đẳng thức: P10.

Câu 5: Nồng độ cồn trong máu (tiếng Anh là Blood Alcohol Content, viết tắt: BAC) được định nghĩa là tỉ lệ phẩn trăm lượng rượu (ethyl alcohol hoặc ethanol) trong máu của một người. Chẳng hạn, nồng độ cồn trong máu là 0,05% nghĩa là có 50mg rượu trong 100ml máu. Càng uống nhiểu rượu bia thì nồng độ cồn trong máu càng cao và càng nguy hiểm khi tham gia giao thông. Nghị định 100/2019/NĐ-CP quy định mức xử phạt vi phạm hành chính đối vồi người điểu khiển xe gắn máy uống rượu bia khi tham gia giao thông như sau:

Mức độ vi phạm

Hình thức xử phạt

Mức 1: Nồng độ cồn trong máu dương và chưa vượt quá 50mg/ 100ml máu

Từ 2 triệu đồng đến 3 triệu đồng và tước bằng lái xe từ 10 tháng đến 12 tháng

Mức 2: Nồng độ cồn trong máu vượt quá 50mg/ 100ml máu và chưa vượt quá 80mg/ 100ml máu

Từ 4 triệu đồng đến 5 triệu đồng và tước bằng lái xe từ 16 tháng đến 18 tháng

Mức 3: Nồng độ cồn trong máu vượt quá 80mg/ 100ml máu

Từ 6 triệu đồng đến 8 triệu đồng và tước bằng lái xe từ 22 tháng đến 24 tháng

Giả sử nồng độ cồn trong máu của một người sau khi uống rượu bia được tính theo công thức sau: y=0,0760,008t, trong đó được tính theo đơn vị % và t là số giờ tính từ thời điểm uống rượu bia. Hỏi 3 giờ sau khi uống rượu bia, nếu người này điều khiển xe gắn máy tham gia giao thông thì sẽ bị xử phạt ở mức nào?

Bài toán thực tế lớp 9 Bất đẳng thức và bất phương trình bậc nhất một ẩn

Lời giải

Sau 3 giờ uống rượu bia, nồng độ cồn trong máu của người đó là:

y=0,0760,008.3=0,052(%)

Tức là, nồng độ cồn trong máu là 52mg rượu trong 100ml máu.

Do 50 < 52 < 80 nên nếu người này điều khiển xe gắn máy tham gia giao thông thì sẽ bị xử phạt ở mức 2, với hình thức xử phạt từ 4 triệu đồng đến 5 triệu đồng và tước bằng lái xe từ 16 tháng đến 18 tháng.

................................

................................

................................

Xem thử

Xem thêm Chuyên đề Toán thực tế lớp 9 chương trình mới có lời giải hay khác:

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Loạt bài Chuyên đề: Lý thuyết - Bài tập Toán lớp 9 Đại số và Hình học có đáp án có đầy đủ Lý thuyết và các dạng bài được biên soạn bám sát nội dung chương trình sgk Đại số 9 và Hình học 9.

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 9 sách mới các môn học