Các dạng bài tập về Góc nội tiếp (chọn lọc, có lời giải)

Bài viết Các dạng bài tập về Góc nội tiếp lớp 9 với phương pháp giải chi tiết giúp học sinh ôn tập, biết cách làm bài tập Góc nội tiếp.

Các dạng bài tập về Góc nội tiếp (chọn lọc, có lời giải)

A. Phương pháp giải

Ta áp dụng các kiến thức sau:

1. Góc nội tiếp là góc có đỉnh nằm trên đường tròn và hai cạnh chứa hai dây cung của đường tròn đó.

Cung nằm bên trong góc gọi là cung bị chắn.

2. Trong một đường tròn, số đo của góc nội tiếp bằng một nửa số đo của cung bị chắn.

3. Trong một đường tròn:

a) Các góc nội tiếp bằng nhau chắn các cung bằng nhau.

b) Các góc nội tiếp cùng chắn một cung hoặc chắn các cung bằng nhau thì bằng nhau.

c) Góc nội tiếp (nhỏ hơn hoặc bằng) có số đo bằng nửa số đo của góc ở tâm cùng chắn một cung.

d) Góc nội tiếp chắn nửa đường tròn là góc vuông.

B. Ví dụ minh họa

Ví dụ 1 : Cho đường tròn tâm O và hai dây cung song song AB, CD. Trên cung AB lấy điểm M. Chứng minh rằng Các dạng bài tập về Góc nội tiếp chọn lọc, có lời giải .

Hướng dẫn giải

Các dạng bài tập về Góc nội tiếp chọn lọc, có lời giải

Ta có: Các dạng bài tập về Góc nội tiếp chọn lọc, có lời giải là góc nội tiếp chắn Các dạng bài tập về Góc nội tiếp chọn lọc, có lời giải

Các dạng bài tập về Góc nội tiếp chọn lọc, có lời giải là góc nội tiếp chắn Các dạng bài tập về Góc nội tiếp chọn lọc, có lời giải

Ta lại có AB//CD nên Các dạng bài tập về Góc nội tiếp chọn lọc, có lời giải .

Do đó: Các dạng bài tập về Góc nội tiếp chọn lọc, có lời giải ( hai góc nội tiếp chắn hai cung bằng nhau).

Ví dụ 2 : Cho đường tròn (O) đường kính AB và hai điểm E, F nằm trên một đường tròn. Các đường thẳng AE, BF cắt nhau tại P nằm ngoài đường tròn (O). AF và BE cắt nhau tại Q. Chứng minh PQ vuông góc với AB.

Hướng dẫn giải

Các dạng bài tập về Góc nội tiếp chọn lọc, có lời giải

Ta có Các dạng bài tập về Góc nội tiếp chọn lọc, có lời giảiCác dạng bài tập về Góc nội tiếp chọn lọc, có lời giải là góc nội tiếp chắn nửa đường tròn nên Các dạng bài tập về Góc nội tiếp chọn lọc, có lời giải .

⇒ AF ⊥ PB, BE ⊥ PA

Xét ΔPAB , ta có: AF ⊥ PB, BE ⊥ PA

Mà AF ∩ BE = {Q}

Suy ra Q là trực tâm ΔPAB .

Từ đó suy ra PQ ⊥ AB .

Ví dụ 3 : Cho đường tròn (O; R) và một điểm M bên trong đường tròn đó. Qua M kẻ hai dây cung AB và CD vuông góc với nhau (C thuộc cung nhỏ AB). Vẽ đường kính DE. Chứng minh rằng:

a) MA.MB = MC.MD.

b) Tứ giác ABEC là hình thang cân.

c) Tổng MA2 + MB2 + MC2 + MD2 có giá trị không đổi khi M thay đổi vị trí trong đường tròn (O).

Hướng dẫn giải

Các dạng bài tập về Góc nội tiếp chọn lọc, có lời giải

a) Xét ΔAMC và ΔDMB có:

Các dạng bài tập về Góc nội tiếp chọn lọc, có lời giải ( hai góc nội tiếp cùng chắn cung Các dạng bài tập về Góc nội tiếp chọn lọc, có lời giải )

Các dạng bài tập về Góc nội tiếp chọn lọc, có lời giải (GT)

⇒ ΔAMC ∼ ΔDMB (g.g)

⇒ MA/MD = MC/MB ⇔ MA.MB = MC.MD.

b) Ta có: Các dạng bài tập về Góc nội tiếp chọn lọc, có lời giải (góc nội tiếp chắn nửa đường tròn)

⇒ CD ⊥ CE

Mà CD ⊥ AB (gt)

⇒ AB // CE.

⇒ Tứ giác ABEC là hình thang (1).

Mặt khác: CE và AB là hai dây song song của đường tròn (O) chắn hai cung AC và BE nên Các dạng bài tập về Góc nội tiếp chọn lọc, có lời giải

Ta lại có: Các dạng bài tập về Góc nội tiếp chọn lọc, có lời giải

Các dạng bài tập về Góc nội tiếp chọn lọc, có lời giải .(hai góc nội tiếp chắn hai cung bằng nhau) (2)

Từ (1) và (2) suy ra tứ giác ABEC là hình thang cân.

c) Vì Các dạng bài tập về Góc nội tiếp chọn lọc, có lời giải (chứng minh trên)

⇒ AE = BC .

Mặt khác: Các dạng bài tập về Góc nội tiếp chọn lọc, có lời giải (góc nội tiếp chắn nửa đường tròn)

Xét vuông tại A có: AD2 + AE2 = DE2 (định lý Py – ta – go)

Xét tổng: MA2 + 2 + MC2 + MD2

= (MA2 + MD2) + (MB2 + MC2)

= AD2 + BC2 = AD2 + AE2 = DE2 = 4R2 không đổi.

Ví dụ 4 : Cho hai đường tròn (O) và (O’) cắt nhau tại A và B. Vẽ các đường kính AC, AD của hai đường tròn. Chứng minh ba điểm C, B, D thẳng hàng.

Hướng dẫn giải

Các dạng bài tập về Góc nội tiếp chọn lọc, có lời giải

Ta có: Trong đường tròn tâm O, Các dạng bài tập về Góc nội tiếp chọn lọc, có lời giải là góc nội tiếp chắn nửa đường tròn

Các dạng bài tập về Góc nội tiếp chọn lọc, có lời giải

Trong đường tròn tâm O’, Các dạng bài tập về Góc nội tiếp chọn lọc, có lời giải là góc nội tiếp chắn nửa đường tròn

Các dạng bài tập về Góc nội tiếp chọn lọc, có lời giải

Suy ra, ba điểm C, B và D thẳng hàng.

Ví dụ 5 : Cho nửa đường tròn (O) đường kính AB và C là điểm chính giữa của cung AB. Lấy điểm M thuộc cung BC và điểm N thuộc tia AM sao cho AN = BM. Kẻ dây CD song song với AM.

a) Chứng minh ΔACN = ΔBCM .

b) Chứng minh ΔCMN vuông cân.

c) Tứ giác ANCD là hình gì? Vì sao?

Hướng dẫn giải

Các dạng bài tập về Góc nội tiếp chọn lọc, có lời giải

a) Xét ΔACN và ΔBCM có:

AC = BC (vì C là điểm chính giữa cung AB)

Các dạng bài tập về Góc nội tiếp chọn lọc, có lời giải (hai góc nội tiếp cùng chắn cung Các dạng bài tập về Góc nội tiếp chọn lọc, có lời giải )

AN = BM (gt)

⇒ ΔACN = ΔBCM (c.g.c)

b) Vì ΔACN = ΔBCM (chứng minh a)

⇒ CN = CM ⇒ ΔCMN cân tại C (1)

Các dạng bài tập về Góc nội tiếp chọn lọc, có lời giải (hai góc ở đáy)

Lại có Các dạng bài tập về Góc nội tiếp chọn lọc, có lời giải

Các dạng bài tập về Góc nội tiếp chọn lọc, có lời giải

Các dạng bài tập về Góc nội tiếp chọn lọc, có lời giải(2)

Từ (1) và (2) suy ra ΔCMN vuông cân tại C.

c) Vì CD // AM nên tứ giác ADCM là hình thang cân.

Ta có: Các dạng bài tập về Góc nội tiếp chọn lọc, có lời giải

Suy ra: AD // CN.

Vậy tứ giác ADCN là hình bình hành.

C. Bài tập trắc nghiệm

Câu 1 : Hình nào dưới đây biểu diễn góc nội tiếp?

Các dạng bài tập về Góc nội tiếp chọn lọc, có lời giải

A. Hình 1

B. Hình 2

C. Hình 3

D. Hình 4

Hướng dẫn giải

Đáp án B

Hình 1: Góc Các dạng bài tập về Góc nội tiếp chọn lọc, có lời giải là góc ở tâm

Hình 2: Góc Các dạng bài tập về Góc nội tiếp chọn lọc, có lời giải là góc nội tiếp

Hình 3: Có một cạnh không là dây của đường tròn

Hình 4 : Góc đã cho có đỉnh không nằm trên đường tròn

Câu 2 : Cho đường tròn (O) và điểm I nằm ngoài (O). Từ điểm I kẻ hai dây cung AB và CD (A nằm giữa I và B, C nằm giữa I và D)

Tích IA.IB bằng

A. ID.CD

B. IC.CB

C. IC.CD

D. ID.IC

Hướng dẫn giải

Đáp án D

Các dạng bài tập về Góc nội tiếp chọn lọc, có lời giải

Ta có: Các dạng bài tập về Góc nội tiếp chọn lọc, có lời giải (hai góc nội tiếp cùng chắn Các dạng bài tập về Góc nội tiếp chọn lọc, có lời giải )

Xét ΔIAD và ΔICB , ta có:

Các dạng bài tập về Góc nội tiếp chọn lọc, có lời giải ( chứng minh trên)

Các dạng bài tập về Góc nội tiếp chọn lọc, có lời giải : góc chung

⇒ ΔIAD ∼ ΔICB (g – g)

Các dạng bài tập về Góc nội tiếp chọn lọc, có lời giải .

Vậy IA.IB = ID.IC .

Câu 3 : Cho đường tròn tâm O. Trên đường tròn lấy 4 điểm theo thứ tự A,B, C và D. Hỏi cặp góc nào sau đây bằng nhau

Các dạng bài tập về Góc nội tiếp chọn lọc, có lời giải

Hướng dẫn giải

Đáp án C

Ta có Các dạng bài tập về Góc nội tiếp chọn lọc, có lời giải là góc nội tiếp chắn Các dạng bài tập về Góc nội tiếp chọn lọc, có lời giải

Các dạng bài tập về Góc nội tiếp chọn lọc, có lời giải là góc nội tiếp chắn Các dạng bài tập về Góc nội tiếp chọn lọc, có lời giải

Các dạng bài tập về Góc nội tiếp chọn lọc, có lời giải ( hai góc nội tiếp cùng chắn Các dạng bài tập về Góc nội tiếp chọn lọc, có lời giải ).

Câu 4 : Khẳng định nào sau đây là sai?

A. Trong một đường tròn, góc nội tiếp chắn nửa đường tròn là góc vuông

B. Trong một đường tròn, hai góc nội tiếp bằng nhau chắn hai cung bằng nhau

C. Trong một đường tròn, hai góc nội tiếp cùng chắn một cung thì bằng nhau

D. Trong một đường tròn, hai góc nội tiếp bằng nhau thì cùng chắn một cung

Hướng dẫn giải

Đáp án D

Vì trong một đường tròn, hai góc nội tiếp bằng nhau thì có thể chắn hai cung bằng nhau.

Câu 5 : Cho hai đường tròn bằng nhau (O) và (O’) cắt nhau tại A và B . Vẽ đường thẳng qua A cắt đường tròn (O) tại M và cắt đường tròn (O’) tại N (A nằm giữa M và N). Hỏi tam giác MNB là tam giác gì?

A. Tam giác cân

B. Tam giác đều

C. Tam giác vuông

D. Tam giác vuông cân

Hướng dẫn giải

Đáp án A

Các dạng bài tập về Góc nội tiếp chọn lọc, có lời giải

+ (O) và (O’) là hai đường tròn bằng nhau

Các dạng bài tập về Góc nội tiếp chọn lọc, có lời giải cùng được căng bởi dây AB

Các dạng bài tập về Góc nội tiếp chọn lọc, có lời giải (1)

+ (O) có Các dạng bài tập về Góc nội tiếp chọn lọc, có lời giải là góc nội tiếp chắn cung Các dạng bài tập về Góc nội tiếp chọn lọc, có lời giải

Các dạng bài tập về Góc nội tiếp chọn lọc, có lời giải (2)

+ (O’) có Các dạng bài tập về Góc nội tiếp chọn lọc, có lời giải là góc nội tiếp chắn cung Các dạng bài tập về Góc nội tiếp chọn lọc, có lời giải

Các dạng bài tập về Góc nội tiếp chọn lọc, có lời giải (2)

Từ (1); (2); và (3) suy ra Các dạng bài tập về Góc nội tiếp chọn lọc, có lời giải

⇒ ΔBMN cân tại B.

Câu 6 : Một huấn luyện viên cho cầu thủ tập sút bóng vào cầu môn PQ. Bóng được đặt ở các vị trí A, B, C trên một cung tròn như hình bên. Hãy so sánh các góc Các dạng bài tập về Góc nội tiếp chọn lọc, có lời giải

Các dạng bài tập về Góc nội tiếp chọn lọc, có lời giải

Các dạng bài tập về Góc nội tiếp chọn lọc, có lời giải

Hướng dẫn giải

Đáp án D

Ta có Các dạng bài tập về Góc nội tiếp chọn lọc, có lời giải vì chúng là các góc nội tiếp chắn cùng một cung Các dạng bài tập về Góc nội tiếp chọn lọc, có lời giải

Câu 7 : Cho hai đường tròn (O; R) và (O’; R’) tiếp xúc trong với nhau tại A, (R > R'). Qua điểm B bất kỳ trên (O’) vẽ tiếp tuyến với (O’) cắt (O) tại hai điểm M và N, AB cắt (O) tại C. Các phát biểu đúng là:

(I) MN ⊥ OC

(II) AC là tia phân giác của

(III) MN ⊥ AB

A. (I) và (III)

B. (II) và (III)

C. (I) và (III)

D. (I), (II) và (III)

Hướng dẫn giải

Đáp án C

Các dạng bài tập về Góc nội tiếp chọn lọc, có lời giải

+ Vì Δ O'AB cân tại O’ nên Các dạng bài tập về Góc nội tiếp chọn lọc, có lời giải

Δ OAC cân tại O nên Các dạng bài tập về Góc nội tiếp chọn lọc, có lời giải

Suy ra Các dạng bài tập về Góc nội tiếp chọn lọc, có lời giải , mà hai góc này ở vị trí đồng vị, do đó O’B // OC.

Mặt khác MN là tiếp tuyến của (O’) tại B

⇒ O'B ⊥ MN. Do đó OC ⊥ MN

+ Trong đường tròn (O):

⇒ OC là đường trung trực của MN

⇒ CM = CN

Các dạng bài tập về Góc nội tiếp chọn lọc, có lời giải

Các dạng bài tập về Góc nội tiếp chọn lọc, có lời giải

Hay AC là tia phân giác của Các dạng bài tập về Góc nội tiếp chọn lọc, có lời giải .

Xem thêm các dạng bài tập Toán lớp 9 chọn lọc, có lời giải chi tiết hay khác:

ĐỀ THI, GIÁO ÁN, SÁCH ĐỀ THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 9

Bộ giáo án, bài giảng powerpoint, đề thi dành cho giáo viên và sách dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài hỗ trợ đăng ký : 084 283 45 85

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Loạt bài Chuyên đề: Lý thuyết - Bài tập Toán lớp 9 Đại số và Hình học có đáp án có đầy đủ Lý thuyết và các dạng bài được biên soạn bám sát nội dung chương trình sgk Đại số 9 và Hình học 9.

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.

chuong-3-goc-voi-duong-tron.jsp

Giải bài tập lớp 9 sách mới các môn học
Tài liệu giáo viên