Cách chứng minh các hệ thức lượng trong tam giác vuông cực hay

Cách chứng minh các hệ thức lượng trong tam giác vuông cực hay

Tải xuống

A. Phương pháp giải

1. Chọn các tam giác vuông thích hợp chứa các đoạn thẳng có trong hệ thức. Tính các đoạn thẳng đó nhờ các hệ thức về cạnh và đường cao.

2. Liên kết các giá trị trên và rút ra hệ thức phải chứng minh.

Cho ΔABC, Cách tính độ dài cạnh góc vuông trong tam giác vuông cực hay - Toán lớp 9 = 900, AH ⊥ BC, BC = a, AB = c, AC = b, AH = h thì:

+) BH = c’ được gọi là hình chiếu của AB trên cạnh huyền BC

+) CH = b’ được gọi là hình chiếu của AC trên cạnh huyền BC

Cách tính độ dài cạnh góc vuông trong tam giác vuông cực hay - Toán lớp 9

Khi đó ta có các hệ thức về cạnh và đường cao trong tam giác vuông:

1) b2 = ab'; c2 = ac'

2) h2 = b'c'

3) ha = bc

4) Cách tính độ dài cạnh góc vuông trong tam giác vuông cực hay - Toán lớp 9

5) a2 = b2 + c2( Định lý Pytago)

B. Ví dụ minh họa

Ví dụ 1: Cho ΔABC vuông tại A, đường cao AH. Chứng minh rằng:

BH2 + CH2 = AB2 + AC2 - 2AH2

Bài giải:

Cách chứng minh các hệ thức lượng trong tam giác vuông cực hay - Toán lớp 9

+) Áp dụng hệ thức lượng cho ΔABC vuông tại A, đường cao AH ta có:

AH2 = BH.CH (1)

+) Áp dụng định lý Py – ta – go cho tam giác ABC có:

AB2 + AC2 = BC2

⇔ AB2 + AC2 = (BH + CH)2

⇔ AB2 + AC2 = BH2 + CH2 + 2.BH.CH (2)

Thay (1) vào (2) ta được:

⇔ AB2 + AC2 = BH2 + CH2 + 2AH2

⇔ BH2 + CH2 = AB2 + AC2 - 2AH2

Vậy BH2 + CH2 = AB2 + AC2 - 2AH2

Ví dụ 2: Cho ΔABC vuông tại A, đường cao AH. Gọi D, E lần lượt là hình chiếu của H trên AB và AC. Hãy chứng minh

3AH2 + BD2 + CE2 = BC2

Bài giải:

Cách chứng minh các hệ thức lượng trong tam giác vuông cực hay - Toán lớp 9

+) Xét ΔBHD vuông tại D, áp dụng định lý Py – ta – go ta có: BD2 = BH2 - DH2

+) Xét ΔCHE vuông tại E, áp dụng định lý Py – ta – go ta có: CE2 = CH2 - EH2

+) Xét ΔABC vuông tại A, áp dụng định lý Py – ta – go ta có: BC2 = AB2 + AC2

+) Xét ΔAHE vuông tại E, áp dụng định lý Py – ta – go ta có: AH2 = AE2 + EH2

Ta có:

3AH2 + BD2 + CE2 = BC2

⇔ 3AH2 + (BH2 - DH2) + (CH2 - EH2) = AB2 + AC2 ( Định lý Py – ta – go cho ba tam giác vuông ΔBHD, ΔCHE và ΔABC )

⇔ 3AH2 + BH2 + CH2 - (EH2 + DH2) = AB2 + AC2 (*)

+) Xét tứ giác ADHE có:

Cách chứng minh các hệ thức lượng trong tam giác vuông cực hay - Toán lớp 9 = 900 (gt)

⇒ Tứ giác ADHE là hình chữ nhật ⇒ DH = AE

Thay DH = AE vào (*) ta có:

(*) ⇔ 3AH2 + BH2 + CH2 - (EH2 + AE2) = AB2 + AC2

⇔ 3AH2 + BH2 + CH2 - AH2 = AB2 + AC2 (do AH2 = AE2 + EH2)

⇔ BH + CH + 2AH = AB + AC (luôn đúng theo ví dụ 1)

Vậy 3AH2 + BD2 + CE2 = BC2.

Ví dụ 3: Cho ΔABC vuông tại A, đường cao AH. Gọi M, N lần lượt là hình chiếu vuông góc của H trên AB và AC. Chứng minh rằng:

a) AM.AB = AN. AC

b) HB.HC = MA.MB + NA.NC

Bài giải:

Cách chứng minh các hệ thức lượng trong tam giác vuông cực hay - Toán lớp 9

a) Xét ΔABH có: AH ⊥ BC ⇒ Cách chứng minh các hệ thức lượng trong tam giác vuông cực hay - Toán lớp 9 = 900

⇒ ΔABH vuông tại H

Mà HM AB ⇒ AM.AB = AH2 ( Hệ thức lượng trong tam giác vuông)

Chứng minh tương tự: AN.AC = AH2

Vậy suy ra AH2 = AM.AB = AN.AC (đpcm)

b)

+) Xét tam giác ABC vuông tại A có AH ⊥ BC (gt)⇒ AH2 = BH.CH( Hệ thức lượng trong tam giác vuông)

Chứng minh tương tự:

Xét tam giác vuông ABH ta có: MH2 = BM.AM

Xét tam giác vuông ACH có: NH2 = AN.CN

+) Xét tứ giác AMHN có:

Cách chứng minh các hệ thức lượng trong tam giác vuông cực hay - Toán lớp 9 = 900 (gt)

⇒ Tứ giác AMHN là hình chữ nhật ⇒ NH = AM

+) Xét tam giác vuông AMH có:

AH2 = AM2 + MH2 ( Định lý Py – ta – go)

⇔ AH2 = MH2 + NH2 ( do AM = NH – cmt)

⇔ BH.CH = BM.AM + AN.Cn (đpcm)

Vậy HB.HC = MA.MB + NA.NC.

Ví dụ 4: Cho ΔABC vuông tại A, đường cao AH. Gọi D, E lần lượt là hình chiếu của H trên AB và AC. Hãy chứng minh:

a) Cách chứng minh các hệ thức lượng trong tam giác vuông cực hay - Toán lớp 9

b) AH3 = BC.BD.CE

Bài giải:

Cách chứng minh các hệ thức lượng trong tam giác vuông cực hay - Toán lớp 9

a) Áp dụng hệ thức lượng cho ΔABC vuông tại A, đường cao AH ta có:

Cách chứng minh các hệ thức lượng trong tam giác vuông cực hay - Toán lớp 9

b)

+) Xét ΔABH có: AH ⊥ BC ⇒ Cách chứng minh các hệ thức lượng trong tam giác vuông cực hay - Toán lớp 9 = 900

⇒ ΔABH vuông tại H

Mà HD ⊥ AB ⇒ BH2 = BD.AB ( Hệ thức lượng trong tam giác vuông)

Chứng minh tương tự ta có: CH2 = EC.AC

+) Xét tam giác ABC có:

AH2 = BH.CH ( Hệ thức lượng trong tam giác vuông)

⇔ AH4 = BH2.CH2

⇒ AH4 = BD.AB.AC.EC

⇔ AH4 = BD.CE.(AB.AC)

Mặt khác AB.AC = AH.BC ( Hệ thức lượng trong tam giác vuông)

⇔ AH4 = BD.CE.AH.BC

Do AH > 0 nên chia cả hai vế cho AH ta được:

⇔ AH3 = BD.CE.BC (đpcm)

Vậy AH3 = BC.BD.CE.

Ví dụ 5: Cho tam giác ABC vuông tại A. Trên AB lấy điểm D, trên AC lấy điểm E. Chứng minh: CD2 + BE2 = CB2 + DE2

Bài giải:

Cách chứng minh các hệ thức lượng trong tam giác vuông cực hay - Toán lớp 9

Áp dụng định lý Py – ta – go cho các tam giác ΔABC, ΔABE có:

Cách chứng minh các hệ thức lượng trong tam giác vuông cực hay - Toán lớp 9 (1)

Mặt khác áp dụng định lý Py – ta – go cho ΔABC và ΔADE có:

Cách chứng minh các hệ thức lượng trong tam giác vuông cực hay - Toán lớp 9 (2)

Từ (1) và (2) suy ra: CD2 + BE2 = CB2 + DE2 - đpcm

Ví dụ 6: Cho tam giác ABC cân tại A, ba đường cao AD, BE, CF. Đường thẳng qua B và song song với CF cắt đường thẳng AC tại H. Chứng minh rằng:

a) AC là trung bình nhân của AE và AH

b) Cách chứng minh các hệ thức lượng trong tam giác vuông cực hay - Toán lớp 9

Bài giải:

Cách chứng minh các hệ thức lượng trong tam giác vuông cực hay - Toán lớp 9

a) Ta có Cách chứng minh các hệ thức lượng trong tam giác vuông cực hay - Toán lớp 9

Xét ΔABH vuông tại B có BE là đường cao nên AB2 = AH.AE

Mà ΔABC cân tại A ⇒ AB = AC do đó AC2 = AB2 = AH.AE

Vậy AC2 = AH.AE.

b)

+) Xét ΔABC cân tại A có AD là đường cao

⇒ AD cũng đồng thời là đường trung tuyến ⇒ BD = CD = Cách chứng minh các hệ thức lượng trong tam giác vuông cực hay - Toán lớp 9BC

Từ D dựng DK ⊥ AB (K ∈ AB)

Mà CF ⊥ AB (gt) ⇒ KD // CF

+) Xét ΔBFC có: Cách chứng minh các hệ thức lượng trong tam giác vuông cực hay - Toán lớp 9

DK là đường trung bình của ΔBFC ⇒ KD = Cách chứng minh các hệ thức lượng trong tam giác vuông cực hay - Toán lớp 9 CF

+) Xét ΔABD vuông tại D có: KD ⊥ AB (gt)

Cách chứng minh các hệ thức lượng trong tam giác vuông cực hay - Toán lớp 9 (Hệ thức lượng trong tam giác vuông)

Mặt khác nên ta được:

Cách chứng minh các hệ thức lượng trong tam giác vuông cực hay - Toán lớp 9

Ví dụ 7: Cho góc xOy và tia Oz nằm giữa hai tia Ox và Oy. Từ điểm A trên tia Oz vẽ AH ⊥ Ox, AK ⊥ Oy. Gọi E và F lần lượt là hình chiếu của H và K trên Oz, gọi B là giao điểm của HK và Oz. Chứng minh rằng:

Cách chứng minh các hệ thức lượng trong tam giác vuông cực hay - Toán lớp 9

Bài giải:

Cách chứng minh các hệ thức lượng trong tam giác vuông cực hay - Toán lớp 9

+) Xét ΔOHA vuông tại H có HE ⊥ OA (gt)

⇒ HE2 = EA.EO( Hệ thức lượng trong tam giác vuông) (1)

+) Xét ΔOKA vuông tại H có KF ⊥ OA (gt)

⇒ KF2 = FA.FO ( Hệ thức lượng trong tam giác vuông) (2)

Từ (1) và (2) suy ra:

Cách chứng minh các hệ thức lượng trong tam giác vuông cực hay - Toán lớp 9

Tải xuống

Xem thêm các dạng bài tập Toán lớp 9 chọn lọc, có lời giải chi tiết hay khác:

Giới thiệu kênh Youtube VietJack

Ngân hàng trắc nghiệm lớp 9 tại khoahoc.vietjack.com

CHỈ CÒN 250K 1 KHÓA HỌC BẤT KÌ, VIETJACK HỖ TRỢ DỊCH COVID

Phụ huynh đăng ký mua khóa học lớp 9 cho con, được tặng miễn phí khóa ôn thi học kì. Cha mẹ hãy đăng ký học thử cho con và được tư vấn miễn phí. Đăng ký ngay!

Tổng đài hỗ trợ đăng ký khóa học: 084 283 45 85

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Nhóm học tập facebook miễn phí cho teen 2k6: fb.com/groups/hoctap2k6/

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Loạt bài Chuyên đề: Lý thuyết - Bài tập Toán lớp 9 Đại số và Hình học có đáp án có đầy đủ Lý thuyết và các dạng bài được biên soạn bám sát nội dung chương trình sgk Đại số 9 và Hình học 9.

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.

chuong-1-he-thuc-luong-trong-tam-giac-vuong.jsp

Nhóm học tập 2k7