Cách giải phương trình trùng phương lớp 9 (cực hay, có đáp án)
Bài viết Cách giải phương trình trùng phương lớp 9 với phương pháp giải chi tiết giúp học sinh ôn tập, biết cách làm bài tập Cách giải phương trình trùng phương.
Cách giải phương trình trùng phương lớp 9 (cực hay, có đáp án)
A. Phương pháp giải
Giải phương trình trùng phương: Cho phương trình ax4 + bx2 + c = 0 (a ≠ 0) (1)
Bước 1: Đặt x2 = t (ĐK t ≥ 0), ta được phương trình bậc hai ẩn t: at2 + bt + c = 0 (a ≠ 0) (2)
Bước 2: Giải phương trình bậc hai ẩn t.
Bước 3: Giải phương trình x2 = t để tìm nghiệm .
Bước 4: Kết luận.
Biện luận số nghiệm của phương trình trùng phương
+) Phương trình (1) có 4 nghiệm phân biệt ⇒ phương trình (2) có 2 nghiệm dương phân biệt.
+) Phương trình (1) có 3 nghiệm phân biệt ⇒ phương trình (2) có 1 nghiệm dương và một nghiệm t = 0.
+) Phương trình (1) có 2 nghiệm phân biệt ⇒ phương trình (2) có 2 nghiệm trái dấu hoặc có nghiệm kép dương.
+) Phương trình (1) có duy nhất 1 nghiệm ⇒ phương trình (2) có nghiệm kép x = 0 hoặc có một nghiệm x = 0 và một nghiệm âm.
+) Phương trình (1) vô nghiệm ⇒ phương trình (2) vô nghiệm hoặc có hai nghiệm âm.
B. Các ví dụ điển hình
Ví dụ 1: Số nghiệm của phương trình x4 - 6x2 + 8 = 0 là:
Lời giải
Chọn D
Ví dụ 2: Phương trình x4 + 2(m + 1)x2 + m2 = 0 vô nghiệm khi:
Lời giải
Chọn B
Ví dụ 3: Cho phương trình x4 - 2(m + 1)x2 + 2m + 3 = 0 là tham số. Tìm số tự nhiên m nhỏ nhất để phương trình có bốn nghiệm phân biệt.
Lời giải
Chọn A
C. Bài tập vận dụng
Bài 1: Phương trình x4 - 8x2 + 4 = 0 có tập nghiệm là
Lời giải:
Đáp án B
Bài 2: Số nghiệm của phương trình (x2 - 3x)2 - 2x2(1 - 3x) = 8 là:
Lời giải:
Đáp án B
Bài 3: Cho các phương trình
Số nghiệm của các phương trình theo thứ tự là:
Lời giải:
Đáp án D
Bài 4: Chọn kết luận đúng về phương trình (1).
Lời giải:
Đáp án A
Bài 5: Cho phương trình m2x4 + x2 - m2 - 1 = 0 với m là tham số. Chọn khẳng định sai.
Lời giải:
Đáp án A
Bài 6: Phương trình có nghiệm là:
Lời giải:
Đáp án
Bài 7: Tìm m để phương trình (m + 1)x4 + 5x2 - m - 1 = 0. Tìm giá trị của m để phương trình có đúng hai nghiệm phân biệt.
Lời giải:
Đáp án D
Bài 8: Cho phương trình x4 - 13x2 + m = 0 (1). Với giá trị của m để phương trình (1) có ba nghiệm phân biệt, ba nghiệm đó là:
Lời giải:
Đáp án C
Bài 9: Tìm m để phương trình x4 + 2mx2 + 8 = 0 có bốn nghiệm phân biệt sao cho tổng của bình phương các nghiệm bằng 32
Lời giải:
Đáp án C
Bài 10: Điều kiện của a và b để phương trình x4 - 2(a2 + b2)x2 + (a2 - b2)2 = 0 có ba nghiệm phân biệt là:
Lời giải:
Đáp án D
D. Bài tập tự luyện
Bài 1. Giải phương trình
a) (x + 4)(x + 6)(x – 2)(x – 12) = 25x2;
b) (x + 1)4 – 5(x + 1)2 – 84 = 0;
c) (x2 + 5x + 8)(x2 + 6x + 8) = 2x2.
Bài 2. Số nghiệm của phương trình x4 – 16x3 + 66x2 – 16x – 55 = 0.
Bài 3. Cho phương trình x4 – 2(1 + m)x2 + m2 – 3m – 2 = 0.
a) Giải phương trình khi m = 1;
b) Tìm m nhỏ nhất để phương trình có 2 nghiệm phân biệt.
Bài 4. Tìm m để phương trình x4 – 2(1 – m2)x2 + m + 1= 0
a) Có nghiệm;
b) Có 1 nghiệm.
Bài 5. Cho phương trình x4 – 8m2x2 + 1 = 0. Số giá trị của m để phương trình:
a) Có 1 nghiệm;
b) Có 2 nghiệm phân biệt;
c) Có 3 nghiệm phân biệt;
d) Có 4 nghiệm phân biệt.
Xem thêm các dạng bài tập Toán lớp 9 chọn lọc, có đáp án hay khác:
- Cách giải phương trình chứa ẩn ở mẫu cực hay, có đáp án
- Cách giải phương trình tích cực hay, có đáp án
- Các dạng bài tập Phương trình quy về phương trình bậc hai cực hay, có đáp án
- Cách giải bài toán về cấu tạo số bằng cách lập phương trình cực hay, có đáp án
- Cách giải bài toán năng suất bằng cách lập phương trình cực hay, có đáp án
Tủ sách VIETJACK luyện thi vào 10 cho 2k10 (2025):
Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.
Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:Loạt bài Chuyên đề: Lý thuyết - Bài tập Toán lớp 9 Đại số và Hình học có đáp án có đầy đủ Lý thuyết và các dạng bài được biên soạn bám sát nội dung chương trình sgk Đại số 9 và Hình học 9.
Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.
- Giải Tiếng Anh 9 Global Success
- Giải sgk Tiếng Anh 9 Smart World
- Giải sgk Tiếng Anh 9 Friends plus
- Lớp 9 Kết nối tri thức
- Soạn văn 9 (hay nhất) - KNTT
- Soạn văn 9 (ngắn nhất) - KNTT
- Giải sgk Toán 9 - KNTT
- Giải sgk Khoa học tự nhiên 9 - KNTT
- Giải sgk Lịch Sử 9 - KNTT
- Giải sgk Địa Lí 9 - KNTT
- Giải sgk Giáo dục công dân 9 - KNTT
- Giải sgk Tin học 9 - KNTT
- Giải sgk Công nghệ 9 - KNTT
- Giải sgk Hoạt động trải nghiệm 9 - KNTT
- Giải sgk Âm nhạc 9 - KNTT
- Giải sgk Mĩ thuật 9 - KNTT
- Lớp 9 Chân trời sáng tạo
- Soạn văn 9 (hay nhất) - CTST
- Soạn văn 9 (ngắn nhất) - CTST
- Giải sgk Toán 9 - CTST
- Giải sgk Khoa học tự nhiên 9 - CTST
- Giải sgk Lịch Sử 9 - CTST
- Giải sgk Địa Lí 9 - CTST
- Giải sgk Giáo dục công dân 9 - CTST
- Giải sgk Tin học 9 - CTST
- Giải sgk Công nghệ 9 - CTST
- Giải sgk Hoạt động trải nghiệm 9 - CTST
- Giải sgk Âm nhạc 9 - CTST
- Giải sgk Mĩ thuật 9 - CTST
- Lớp 9 Cánh diều
- Soạn văn 9 Cánh diều (hay nhất)
- Soạn văn 9 Cánh diều (ngắn nhất)
- Giải sgk Toán 9 - Cánh diều
- Giải sgk Khoa học tự nhiên 9 - Cánh diều
- Giải sgk Lịch Sử 9 - Cánh diều
- Giải sgk Địa Lí 9 - Cánh diều
- Giải sgk Giáo dục công dân 9 - Cánh diều
- Giải sgk Tin học 9 - Cánh diều
- Giải sgk Công nghệ 9 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 9 - Cánh diều
- Giải sgk Âm nhạc 9 - Cánh diều
- Giải sgk Mĩ thuật 9 - Cánh diều