Cách tính độ dài cạnh góc vuông trong tam giác vuông lớp 9 (cực hay)
Bài viết Cách tính độ dài cạnh góc vuông trong tam giác vuông lớp 9 với phương pháp giải chi tiết giúp học sinh ôn tập, biết cách làm bài tập Cách tính độ dài cạnh góc vuông trong tam giác vuông.
Cách tính độ dài cạnh góc vuông trong tam giác vuông lớp 9 (cực hay)
A. Phương pháp giải
• Xác định vị trí cạnh huyền
• Áp dụng hệ thức về cạnh hoặc đường cao đã được học.
Cho ΔABC, = 900, AH ⊥ BC, BC = a, AB = c, AC = b, AH = h thì:
+) BH = c’ được gọi là hình chiếu của AB trên cạnh huyền BC
+) CH = b’ được gọi là hình chiếu của AC trên cạnh huyền BC
Khi đó ta có các hệ thức về cạnh và đường cao trong tam giác vuông:
1) b2 = ab'; c2 = ac'
2) h2 = b'c'
3) ha = bc
4)
5) a2 = b2 + c2( Định lý Pytago)
B. Ví dụ minh họa
Ví dụ 1: Cho tam giác ABC vuông tại A, đường cao AH, biết HB = 20cm, HC = 30cm. Tính AB, AC, AH.
Bài giải:
Ta có: BC = BH + HC = 20 + 30 = 50 (cm)
Áp dụng hệ thức lượng trong tam giác vuông ABC có đường cao AH:
+) AB2 = BH.BC = 20.50 = 1000 ⇒ AB = (cm)
+) AC2 = CH.CB = 30.50 = 1500 ⇒ AC = (cm)
+) AH2 = BH.CH = 20.30 = 600 ⇒ AH = (cm)
Ví dụ 2: Cho tam giác ABC có AB = 9cm; AC = 12cm; BC = 15cm, đường cao AH. Tính độ dài AH.
Bài giải:
Xét tam giác ABC có:
⇒ Tam giác ABC vuông tại A có đường cao AH (Định lý Py - ta - go đảo)
Áp dụng hệ thức lượng trong tam giác vuông ta có:
AH.BC = AB.AC ⇒ AH.15 = 9.12 ⇒ AH = 7,2 cm
Ví dụ 3: Cho tam giác ABC vuông tại A, đường cao AH. Cho biết AC : AB = . Tỉ số HC : HB bằng
Bài giải:
Áp dụng hệ thức lượng trong tam giác vuông ABC có đường cao AH:
C. Bài tập trắc nghiệm
Bài 1: Giá trị của x trong hình bên là bao nhiêu biết BC = 20, AB = 12
Bài giải:
Áp dụng hệ thức lượng trong tam giác vuông ta có:
AB2 = BH.BC
⇔ 122 = x.20
⇒ x =
Đáp án A.
Bài 2: Tìm AH, BC với các giá trị như hình bên.
Bài giải:
+) Áp dụng định lý Pytago cho tam giác vuông ABC ta có:
BC2 = AB2 + AC2
⇒ BC2 = 62 + 82 = 100 ⇒ BC = = 10
+) Áp dụng hệ thức lượng trong tam giác ABC vuông tại A có đường cao AH:
Đáp án C.
Bài 3: Cho tam giác ABC vuông tại A, đường cao AH. Biết AC = 6cm, BH = 9cm. Tính độ dài BC.
C. 3
D. 12
Bài giải:
Đặt HC = x (x > 0)⇒ BC = x + 9
Áp dụng hệ thức lượng trong tam giác vuông ta có:
AC2 = BC.HC
⇔ 62 = (x + 9). x
⇔ x2 + 9x - 36 = 0
⇔ x2 + 12x - 3x - 36 = 0
⇔ x(x + 12) - 3(x + 12) = 0
⇔ (x - 3)(x + 12) = 0
⇒
Vậy BC = BH + CH = 9 + 3 = 12cm
Đáp án D.
Bài 4: Cho tam giác ABC vuông tại A, đường cao AH. Biết AB = 12cm, BC = 20cm. Tính HC.
A. 6,4cm
B. 7,2cm
C. 12,8cm
D. 16,4cm
Bài giải:
Theo hệ thức lượng trong tam giác vuông ta có:
AB2 = HB.BC ⇒ HB =
⇒ HB = 7,2cm
⇒ HC = BC = HB = 20 - 7,2 = 12,8cm
Đáp án C.
Bài 5: Cho tam giác ABC vuông tại A, đường cao AH. Biết AH = 6cm, HB = 4cm. Tính BC.
A. 10cm
B. 11cm
C. 12 cm
D. 13 cm
Bài giải:
Áp dụng hệ thức lượng trong tam giác vuông ta có:
⇒ BC = BH + HC = 4 + 9 = 13 (cm)
Đáp án D.
Bài 6: Cho tam giác ABC vuông tại A, đường cao AH. Biết AB = 3cm, AC = 4cm. Tính AH.
A. 5,6 cm
B. 2,4 cm
C. 3,6 cm
D. 3,4 cm
Bài giải:
Theo hệ thức lượng trong tam giác vuông ABC ta có:
Đáp án B.
Bài 7: Cho ΔMNP vuông tại M, đường cao MH = 18cm. Biết HN : HP = 1 : 4. Tính độ dài cạnh huyền NP.
A. 36 cm
B. 45 cm
C. 54 cm
D. 63 cm
Bài giải:
Gọi HN = x (x > 0) thì HP = 4x
Theo hệ thức lượng trong tam giác vuông ta có:
MH2 = HN.HP
⇔ 182 = x.4x
⇔ 4x2 = 324
⇔ x2 = 81
⇔ x = 9 (cm)
⇒ HN = 9 cm và HP = 4x = 4.9 = 36 cm
Vậy NP = HN + HP = 9 + 36 = 45 cm
Đáp án B.
Bài 8: Cho tam giác ABC vuông tại A, đường cao AH. Cho biết AC : AB = và HC - HB = 2cm. Độ dài HC bằng:
A. 4 cm
B. 2 cm
C. cm
D. cm
Bài giải:
Áp dụng hệ thức lượng trong tam giác vuông ABC ta có:
Đáp án A.
Bài 9: Cho tam giác ABC vuông tại A có AB : AC = 2 : 3 và đường cao AH bằng 6cm. Khi đó độ dài đoạn thẳng AC bằng:
Bài giải:
Gọi AB = 2x (x > 0) thì AC = 3x
Áp dụng hệ thức lượng trong tam giác vuông ABC ta có:
Đáp án C.
Bài 10: Cho tam giác ABC vuông ở A, đường cao AH. Biết HC = 3cm; HB = 1cm. Tính diện tích tam giác ABC.
Bài giải:
Xét tam giác ABC vuông ở A có đường cao AH:
+) AH2 = HB.HC( Hệ thức lượng trong tam giác)
Đáp án B.
Xem thêm các dạng bài tập Toán lớp 9 chọn lọc, có lời giải chi tiết hay khác:
- Cách dựng cạnh huyền, dựng đoạn trunh bình nhân của hai đoạn thẳng cho trước
- Cách chứng minh các hệ thức lượng trong tam giác vuông cực hay
- Công thức, cách tính tỉ số lượng giác của góc nhọn cực hay
- Dụng góc nhọn alpha khi biết tỉ số lượng giác sin, cos, tan của góc đó
- Chứng minh hệ thức lượng giác trong tam giác vuông cực hay
Tủ sách VIETJACK luyện thi vào 10 cho 2k10 (2025):
Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.
Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:Loạt bài Chuyên đề: Lý thuyết - Bài tập Toán lớp 9 Đại số và Hình học có đáp án có đầy đủ Lý thuyết và các dạng bài được biên soạn bám sát nội dung chương trình sgk Đại số 9 và Hình học 9.
Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.
- Giải Tiếng Anh 9 Global Success
- Giải sgk Tiếng Anh 9 Smart World
- Giải sgk Tiếng Anh 9 Friends plus
- Lớp 9 Kết nối tri thức
- Soạn văn 9 (hay nhất) - KNTT
- Soạn văn 9 (ngắn nhất) - KNTT
- Giải sgk Toán 9 - KNTT
- Giải sgk Khoa học tự nhiên 9 - KNTT
- Giải sgk Lịch Sử 9 - KNTT
- Giải sgk Địa Lí 9 - KNTT
- Giải sgk Giáo dục công dân 9 - KNTT
- Giải sgk Tin học 9 - KNTT
- Giải sgk Công nghệ 9 - KNTT
- Giải sgk Hoạt động trải nghiệm 9 - KNTT
- Giải sgk Âm nhạc 9 - KNTT
- Giải sgk Mĩ thuật 9 - KNTT
- Lớp 9 Chân trời sáng tạo
- Soạn văn 9 (hay nhất) - CTST
- Soạn văn 9 (ngắn nhất) - CTST
- Giải sgk Toán 9 - CTST
- Giải sgk Khoa học tự nhiên 9 - CTST
- Giải sgk Lịch Sử 9 - CTST
- Giải sgk Địa Lí 9 - CTST
- Giải sgk Giáo dục công dân 9 - CTST
- Giải sgk Tin học 9 - CTST
- Giải sgk Công nghệ 9 - CTST
- Giải sgk Hoạt động trải nghiệm 9 - CTST
- Giải sgk Âm nhạc 9 - CTST
- Giải sgk Mĩ thuật 9 - CTST
- Lớp 9 Cánh diều
- Soạn văn 9 Cánh diều (hay nhất)
- Soạn văn 9 Cánh diều (ngắn nhất)
- Giải sgk Toán 9 - Cánh diều
- Giải sgk Khoa học tự nhiên 9 - Cánh diều
- Giải sgk Lịch Sử 9 - Cánh diều
- Giải sgk Địa Lí 9 - Cánh diều
- Giải sgk Giáo dục công dân 9 - Cánh diều
- Giải sgk Tin học 9 - Cánh diều
- Giải sgk Công nghệ 9 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 9 - Cánh diều
- Giải sgk Âm nhạc 9 - Cánh diều
- Giải sgk Mĩ thuật 9 - Cánh diều