17 câu trắc nghiệm Cộng, trừ và nhân số phức có đáp án



17 câu trắc nghiệm Cộng, trừ và nhân số phức có đáp án

Câu 1: Cho hai số phức z1 = 2 + 3i, z2 = 1 - 2i . Tìm khẳng định sai

Quảng cáo

A. z1 + z2 = 3 + i    B. z1 - z2 = 1 + 5i

C. z1.z2 = 8 - i    D.z1. z2 = 8 + i

Tổng của z1 và z2 là z1 + z2 = (2 + 1) + (3 - 2)i = 3 + i

Hiệu của z1 và z2 là z1 - z2 = (2 - 1) + (3 + 2)i = 1 + 5i

Tích của z1 và z2 là z1. z2 = (2 + 3i)(1 - 2i) = 2 - 4i + 3i - 6i2 = 2 - i + 6 = 8 - i

Vậy chọn đáp án D.

Câu 2: Cho hai số phức z1= - 3 + 4i, z2 = 4 - 3i . Môđun của số phức z = z1 + z2 + z1. z2 là

A. 27   B. √27   C. √677   D. 677.

Ta có

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Do đó z = z1 + z2 + z1. z2 = 1 + i + 25i = 1 + 26i

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Chọn đáp án C.

Câu 3: Tìm các số thực x, y sao cho: (1 - 2i)x + (1 + 2i)y = 1 + i

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Ta có

(1 - 2i)x + (1 + 2i)y = 1 + i <=> (x + y) + (2y - 2x)i = 1 + i

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Chọn đáp án A.

Câu 4: Phần thực và phần ảo của số phức z = (3 + 4i)(4 - 3i) + (2 - i)(3 + 2i) là

Quảng cáo

A. 32 và 8i   B.32 và 8    C. 18 và -14   D. 32 và -8

Ta có

z = (12 - 9i + 16i - 12i2) + (6 + 4i - 3i - 2i2) = (12 + 7i + 12) + (6 + i + 2) = 32 + 8i

Chọn đáp án B.

Câu 5: Cho các số phức z1 = -1 + i, z2 = 1 - 2i, z3 = 1 + 2i . Giá trị của biểu thức T = |z1z2 + z2z3 + z3z1| là

B. 1   B. √13   C. 5   D. 13.

Ta có:

z2z3 = (1 - 2i)(1 + 2i) = 1 - 4i2 = 5

z1z2 + z1z3 = z1(z2 + z3) = (-1 + i)(1 - 2i + 1 + 2i) = -2 + 2i

Suy ra

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Chọn đáp án B.

Câu 6: Tổng của hai số phức z1 = 1 - 2i, z2 = 2 - 3i là

A. 2 + 5i   B. 2 – 5i    C. 1 + 5i   D. 1 – 5i.

Tổng của hai số phức z1 = 1 - 2i, z2 = 1 - 3i là z = (1 + 1) + (-2 - 3)i = 2 - 5i.

Câu 7: Cho hai số phức z1 = 2 + 3i, z2 = 2 - 4i . Hiệu z1 - z2 bằng

A. 2 + 7i   B. 2 – i   C. 7i   D. – 7i.

Hiệu của hai số phức z1 = 2 + 3i, z2 = 2 - 4i là z = (2 - 2) + (3 -(-4))i = 7i

Quảng cáo
Cài đặt app vietjack

Câu 8: Tích của hai số phức z1 = 3 + 2i, z2 = 2 - 3i là

A. 6 – 6i    B. 12   C. – 5i    D. 12 – 5i.

Tích của hai số phức z1 = 3 + 2i, z2 = 2 - 3i là:

z = (3 + 2i)(2 - 3i) = 6 - 9i + 4i - 6i2 = 6 - 5i + 6 = 12 - 5i

Câu 9: Số phức z = (1 + i)2 bằng

A. 2i   B. 1 + 3i    C. – 2i    D. 0.

Ta có: z = (1 + i)2 = 1 + 2i + i2 = 1 + 2i - 1 = 2i

Câu 10: Số phức z = (1 - i)3 bằng

A. 1 + i   B. – 2 – 2i    C. – 2 + 2i    D. 4 + 4i

Ta có:

z = (1 - i)3 = 1 - 3i + 3i2 - i3

= 1 - 3i - 3.(-1) - i2i = 1 - 3i - 3 + i = -2 - 2i

Câu 11: Môđun của tổng hai số phức z1 = 3 - 4i và z2 = 4 + 3i là

A. 5√2   B. 8   C. 10    D. 50.

Ta có: z1 + z2 = (3 + 4) + (-4 + 3)i = 7 - i

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Câu 12: Cho z = -1 + 3i . Số phức w = iz + 2z bằng

A. 1 + 5i   B. 1 + 7i   C. – 1 + 5i    D. – 1 + 7i

Ta có: z = -1 + 3i => z = -1 - 3i => iz = - i - 3i2 = 3 - i

Suy ra: w = 2z + z = 3 - i + 2(-1 + 3i) = 1 + 5i

Câu 13: Cho z = 1 + 2i . Phần thực và phần ảo của số phức w = 2z + z là

A. 3 và 2    B. 3 và 2i    C. 1 và 6    D. 1 và 6i

Ta có: w = 2z + z = 2(1 + 2i) + (1 - 2i) = 3 + 2i

Vậy phần thực của w là 3, phần ảo của w là 2

Câu 14: Cho số phức z thỏa mãn (1 + 2i)z + iz = 2i . Khi đó tích z.iz bằng

A. – 2    B. 2    C. – 2i    D. 2i.

Đặt z = a + bi(a, b ∈ R).

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Suy ra z = 1 + i. Vậy z.z = |z|2 = 12 + 12 = 2

Câu 15: Môđun của số phức z thỏa mãn 2z + 3(1 - i)iz = 1 - 9i là

A. 5    B. 13     C. √5    D. √13

Đặt z = a + bi (a, b ∈ R). Ta có: z = a - bi và (1 - i)z = (1 - i)(a - bi) = a - bi - ai + bi2 = a - b - (a + b)i Do đó 2z + 3(1 - i)z = 1 - 9i <=> 2(a + bi) + 3[a - b - (a + b)i] = 1 - 9i

<=> (5a - 3b) - (3a + b)i = 1 - 9i

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Suy ra z = 2 + 3i. Vậy:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Câu 16: Cho hai số phức z1, z2 thỏa mãn |z1| = |z2| = |z1 + z2| = 1 . Khi đó |z1 - z2| bằng

A. 0    B. 1   C. 2   D. √3

Cách 1: Đặt z1 = a1 + b 1i, z2 = a2 + b2i (a1, a2, b1, b2 ∈ R). Ta có:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Cách 2: Ta có: |z1| = |z2| = 1 => z1z1 = z2z2 = 1

|z1| + |z2| = 1

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Do đó

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Vậy |z1| - |z2| = √3

Câu 17: Tập hợp các điểm biểu diễn số phức z thỏa mãn |z + 1 - 2i| = 2 là

A. Đường tròn tâm I(1; -2) bán kính R = 2

B. Đường tròn tâm I(1; -2) bán kính R = 4

C. Đường tròn tâm I(-1; 2) bán kính R = 2

D. Đường tròn tâm I(-1; 2) bán kính R = 4

Đặt z = a + bi(a, b ∈ R). Ta có: z + 1 - 2i = (a + 1) + (b - 2)i. Do đó:

|z + 1 - 2i| = 2 <=> (a + 1)2 + (b - 2)2 = 4

Vậy tập hợp điểm M biểu diễn số phức z là đường tròn tâm I(-1 ;2), bán kính R = 2

Xem thêm Bài tập trắc nghiệm Toán 12 phần Giải tích ôn thi THPT Quốc gia có đáp án hay khác:

Ngân hàng trắc nghiệm miễn phí ôn thi THPT Quốc Gia tại khoahoc.vietjack.com

GIẢM GIÁ 75% KHÓA HỌC VIETJACK HỖ TRỢ DỊCH COVID

Tổng hợp các video dạy học từ các giáo viên giỏi nhất - CHỈ TỪ 399K tại khoahoc.vietjack.com

Tổng đài hỗ trợ đăng ký khóa học: 084 283 45 85




Các loạt bài lớp 12 khác