100 câu trắc nghiệm Toán Hình 12 Chương 2 (có đáp án): Mặt nón, mặt trụ, mặt cầu
Với 100 bài tập trắc nghiệm Hình học 12 Chương 2: Mặt nón, mặt trụ, mặt cầu có đáp án và lời giải chi tiết đầy đủ các mức độ nhận biết, thông hiểu, vận dụng giúp học sinh ôn tập trắc nghiệm Toán 12.
Mục lục Bài tập trắc nghiệm Toán Hình 12 Chương 2: Mặt nón, mặt trụ, mặt cầu
- 52 câu trắc nghiệm Khái niệm về mặt tròn xoay có đáp án (phần 1)
- 52 câu trắc nghiệm Khái niệm về mặt tròn xoay có đáp án (phần 2)
- 52 câu trắc nghiệm Khái niệm về mặt tròn xoay có đáp án (phần 3)
- 32 câu trắc nghiệm Mặt cầu có đáp án (phần 1)
- 32 câu trắc nghiệm Mặt cầu có đáp án (phần 2)
- 20 câu trắc nghiệm Ôn tập Chương 2 Hình học 12 có đáp án
Trắc nghiệm Hình học 12 Chương 2 theo bài học
- Trắc nghiệm Hình 12 Bài 1 (có đáp án): Khái niệm về mặt tròn xoay (phần 1)
- Trắc nghiệm Hình 12 Bài 1 (có đáp án): Khái niệm về mặt tròn xoay (phần 2)
- Trắc nghiệm Hình 12 Bài 1 (có đáp án): Khái niệm về mặt tròn xoay (phần 3)
- Trắc nghiệm Hình 12 Bài 2 (có đáp án): Mặt cầu (phần 1)
- Trắc nghiệm Hình 12 Bài 2 (có đáp án): Mặt cầu (phần 2)
- Bài tập trắc nghiệm ôn Toán Hình 12 Chương 2 có đáp án
Trắc nghiệm Khái niệm về mặt tròn xoay có đáp án
Câu 1: Tam giác ABC vuông cân đỉnh A có cạnh huyền là a. Quay tam giác ABC quanh trục AB thì đoạn gấp khúc ACB tạo thành hình nón (N). Diện tích xung quanh của hình nón (N) là:
Theo cách xây dựng hình nón ta có đường sinh của hình nón là: l = BC = a .
Bán kính đáy của hình nón là: r = AC = BC.sin45o = a/√2
Vậy ta có diện tích xung quanh của hình nón (N) là:
Đáp án đúng là C.
Câu 2: Hình nón (N) có đường sinh gấp hai lần bán kính đáy. Góc ở đỉnh của hình nón là :
A. 120o B. 60o C. 30o D. 0o
Từ giả thiết ta có l = 2r .
Gọi 2α là góc ở đỉnh của hình nón, khi đó ta có :
Vậy góc ở đỉnh của hình nón là 60o .
Đáp án đúng là B.
Câu 3: Hình nón có chiều cao bằng đường kính đáy. Tỉ số giữa diện tích xung quanh và diện tích toàn phần của hình nón bằng :
Từ giả thiết ta có:
Đáp án đúng là D.
Câu 4: Một chiếc phễu đựng dầu hình nón có chiều cao là 30cm và đường sinh là 50cm. Giả sử rằng lượng dầu mà chiếc phễu đựng được chính là thể tích của khối nón. Khi đó trong các lượng dầu sau đây, lượng dầu nào lớn nhất chiếc phễu có thể đựng được :
A. 150720π(cm3) B. 50400π(cm3)
C. 16000π(cm3) D. 12000π(cm3)
Từ giả thiết ta có h = 30cm ; l = 50cm. Khi đó ta có
Thể tích khối nón là :
Đáp án đúng là C.
Câu 5: Cho hình trụ có được khi quay hình chữ nhật ABCD quanh trục AB. Biết rằng AB = 2AD = 2a. Thể tích khối trụ đã cho theo a là :
A. 2πa3 B.πa3 C. 2πa3 /3 D.πa3 /2
Từ giả thiết ta có h = AB = 2a, r = AD = a. Khi đó ta có thể tích khối trụ là: V = πr2h = 2πa3 .
Đáp án đúng là A.
Câu 6: Cho hình trụ có diện tích toàn phần là 7πa2 và bán kính đáy là a. Chiều cao của hình trụ là:
A. 3a/2 B. 2a C. 5a/3 D. 5a/2
Từ giả thiết ta có:
Đáp án đúng là D.
Câu 7: Để làm một thùng phi hình trụ người ta cần hai miếng nhựa hình tròn làm hai đáy có diện tích mỗi hình là 4π(cm2) và một miếng nhựa hình chữ nhật có diện tích là 15π(cm2) để làm thân. Tính chiều cao của thùng phi được làm.
A. 15/4(cm) B. 5(cm) C. 15/2(cm) D. 15(cm)
Diện tích miếng nhựa hình chữ nhật để làm thân bằng diện tích xung quanh của thùng phi.
Từ giả thiết ta có :
Đáp án đúng là A.
Câu 8: Cho hình chữ nhật ABCD có AB = 2AD. Lần lượt quay hình chữ nhật quanh các trục AB, AD ta được hai khối trụ lần lượt gọi là (H1), (H2). Tính tỉ số thể tích của khối trụ (H1) chia cho thể tích của khối trụ (H2)
A. 1 B. 1/4 C. 1/2 D. 2
Từ giả thiết ta có:
Khi đó ta có :
Đáp án đúng là C.
Câu 9: Cho hình trụ có bán kính đáy bằng a và diện tích toàn phần 6πa2. Diện tích của thiết diện của hình trụ cắt bởi mặt phẳng (P) đi qua các trục của hình trụ là :
A. a2 B. 2a2 C. 4a2 D. 6a2
Từ giả thiết ta có:
Thiết diện đã cho là một hình chữ nhật có các cạnh lần lượt là h và 2r. Khi đó ta có diện tích thiết diện là : S = 2rh = 4a2 .
Đáp án đúng là C.
Câu 10: Cho khối trụ có diện tích toàn phần là π và có thiết diện cắt bởi mặt phẳng đi qua trục là hình vuông. Thể tích khối trụ là :
Từ giả thiết ta có:
Thể tích khối trụ là :
Đáp án đúng là D.
Trắc nghiệm Mặt cầu có đáp án
Câu 1: Cho mặt cầu tâm O bán kính R và điểm A bất kì trong không gian. Điểm A không nằm ngoài mặt cầu khi và chỉ khi:
A. OA = R B. OA ≤ R C. OA < R D. OA > R
Đáp án đúng là B.
Câu 2: Cho hình chóp S.ABC có đáy là tam giác vuôg cân đỉnh B và BC = a, SA ⊥ (ABC), SA = 2a. Khẳng định nào sau đây là đúng?
A. Điểm S nằm trong mặt cầu tâm A bán kính a
B. Điểm S nằm ngoài mặt cầu tâm A bán kính 2a
C. Điểm C nằm trong mặt cầu tâm A bán kính 2a
D. Cả ba điểm S, B, C cùng nằm trong mặt cầu tâm A bán kính 2a.
Từ giả thiết ta có: SA = 2a; AB = a và AC = a√2 .
Đáp án đúng là C.
Câu 3: Cho mặt cầu (S) tâm O bán kính R và một mặt phẳng (P). Kí hiệu h là khoảng cách từ O đến mặt phẳng (P). Mặt phẳng (P) có nhiều hơn một điểm chung với mặt cầu (S) nếu :
A. h ≤ R B. h ≥ R C. h > R D. h < R
Từ vị trí tương đối của một mặt phẳng với mặt cầu ta có đáp án đúng là D.
Câu 4: Cho mặt cầu (S) tâm O bán kính R và một đường thẳng d. Kí hiệu h là khoảng cách từ O đến đường thẳng d. Đường thẳng d có điểm chung với mặt cầu (S) nếu và chỉ nếu:
A. h ≤ R B. h = R C. h > R D. h < R
Từ vị trí tương đối của một đường thẳng và mặt cầu ta có đường thẳng d có điểm chung với mặt cầu (S) khi và chỉ khi đường thẳng d tiếp xúc hoặc cắt mặt cầu (S).
Đáp án đúng là A.
Câu 5: Cho hình chóp S.ABCD có đáy ABCD là hình vuông có cạnh bằng 2a, SA vuông góc với đáy và SA = a. Bán kính mặt cầu tâm A tiếp xúc với mặt phẳng (SBC) theo a là:
A. 2a B. a C. a√2/2 D. 2a√5/5
Ta có mặt cầu S(A;r) tiếp xúc với mặt phẳng (SBC) khi và chỉ khi r = d(A; (SBC)) .
Hạ AH ⊥ SB tại H. Do BC ⊥ AB và BC ⊥ SA nên BC ⊥ (SAB) , suy ra BC ⊥ AH .
Mặt khác AH ⊥ SB nên AH ⊥ (SBC) hay d(A; (SBC)) = AH Xét tam giác vuông SAB ta có:
Đáp án đúng là D.
Câu 6: Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB = 2AD = 2a. SA vuông góc với đáy, góc giữa cạnh bên SB và đáy là 45o . Bán kính mặt cầu tâm A cắt mặt phẳng (SBD) theo một đường tròn có bán kính bằng a là:
Ta có mặt cầu S(A;r) cắt mặt phẳng (SBD) theo một đường tròn có bán kính bằng a khi và chỉ khi ta có
Ta có:
Hạ AK ⊥ BD tại K, hạ AH ⊥ SK tại H. Do BD ⊥ AK và BD ⊥ SA nên BD ⊥ (SAK) , suy ra BD ⊥ AH. Mặt khác AH ⊥ SK nên ta có AH ⊥ (SBDB) hay d(A; (SBD)) = AH. Xét tam giác vuông SAK và tam giác vuông ABD ta có:
Khi đó ta có:
Đáp án đúng là C.
Câu 7: Cho hình chóp S.ABCD có đáy ABCD là hình vuông có cạnh bằng a, SA vuông góc với đáy và SA = 2a. Bán kính mặt cầu tâm A tiếp xúc với SC theo a là :
Ta có mặt cầu S(A ;r) tiếp xúc với đường thẳng SC khi và chỉ khi ta có r = d(A; SC).
Xét tam giác vuông ABC ta có AC = a√2 . Hạ AH ⊥ SC tại H. Xét tam giác vuông SAC ta có :
Chọn B.
Câu 8: Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, SA = AB = 2AD = 2a. Hai mặt phẳng (SAB) và (SAD) cùng vuông góc với đáy. Bán kính mặt cầu tâm B cắt SC theo một dây có độ dài 2a là :
Do (SAB) ⊥ (ABCD) và (SAD) ⊥ (ABCD) ta có SA ⊥ (ABCD). Theo định lí ba đường vuông góc ta có BC ⊥ SB .
Hạ BH ⊥ SC tại H. Xét tam giác vuông SBC ta có:
Ta có mặt cầu S(B;r) cắt đường thẳng SC theo một dây cung có độ dài 2a khi và chỉ khi ta có
Đáp án đúng là C.
Câu 9: Cho hai quả cầu cùng bán kính là 5cm. Để đựng hai quả cầu Nam phải làm một hình hộp chữ nhật từ bìa carton. Hỏi trong các đáp án dưới đây, Nam cần ít nhất bao nhiêu xen-ti-mét vuông bìa carton để làm được chiếc hộp đó?
A. 300(cm2) B. 1000(cm2) C. 250(cm2) D. 1250(cm2)
Hình hộp chữ nhật đựng được hai quả cầu bán kính 5cm thì độ dài các cạnh ít nhất là 10cm, 10cm, 20cm. Khi đó ta có: Stp = 2 x 102 + 4 x 10 x 20 = 1000(cm2) .
Đáp án đúng là B.
Câu 10: Trong các mệnh đề sau, mệnh đề nào sai?
A. Hình chóp có mặt cầu ngoại tiếp khi và chỉ khi hình chóp có đáy là một tứ giác nội tiếp được đường tròn.
B. Hình chóp có mặt cầu ngoại tiếp nếu nó là hình chóp tam giác
C. Hình chóp có mặt cầu ngoại tiếp nếu nó có các cạnh bên bằng nhau.
D. Hình chóp có mặt cầu ngoại tiếp nếu có cạnh bên vuông góc với đáy.
Hình chóp có mặt cầu ngoại tiếp khi và chỉ khi hình chóp đó có đáy là một đa giác nội tiếp được đường tròn nên mệnh đề A và B đúng. Hình chps có các cạnh bên bằng nhau có hình chiếu vuông góc của đỉnh lên mặt đáy là tâm đường tròn ngoại tiếp đáy nên hình chóp đó có đáy nội tiếp được đường tròn và do đó đáp án C đúng.
Đáp án cần chọn là D.
Xem thêm Bài tập trắc nghiệm Hình học 12 ôn thi THPT Quốc gia có đáp án hay khác:
- Chương 1: Ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số
- Chương 2: Hàm số lũy thừa, hàm số mũ, hàm số logarit
- Chương 3: Nguyên hàm, tích phân và ứng dụng
- Chương 4: Số phức
- Chương 1: Khối đa diện
- Chương 3: Phương pháp tọa độ trong không gian
Sách VietJack thi THPT quốc gia 2025 cho học sinh 2k7:
- Giải Tiếng Anh 12 Global Success
- Giải sgk Tiếng Anh 12 Smart World
- Giải sgk Tiếng Anh 12 Friends Global
- Lớp 12 Kết nối tri thức
- Soạn văn 12 (hay nhất) - KNTT
- Soạn văn 12 (ngắn nhất) - KNTT
- Giải sgk Toán 12 - KNTT
- Giải sgk Vật Lí 12 - KNTT
- Giải sgk Hóa học 12 - KNTT
- Giải sgk Sinh học 12 - KNTT
- Giải sgk Lịch Sử 12 - KNTT
- Giải sgk Địa Lí 12 - KNTT
- Giải sgk Giáo dục KTPL 12 - KNTT
- Giải sgk Tin học 12 - KNTT
- Giải sgk Công nghệ 12 - KNTT
- Giải sgk Hoạt động trải nghiệm 12 - KNTT
- Giải sgk Giáo dục quốc phòng 12 - KNTT
- Giải sgk Âm nhạc 12 - KNTT
- Giải sgk Mĩ thuật 12 - KNTT
- Lớp 12 Chân trời sáng tạo
- Soạn văn 12 (hay nhất) - CTST
- Soạn văn 12 (ngắn nhất) - CTST
- Giải sgk Toán 12 - CTST
- Giải sgk Vật Lí 12 - CTST
- Giải sgk Hóa học 12 - CTST
- Giải sgk Sinh học 12 - CTST
- Giải sgk Lịch Sử 12 - CTST
- Giải sgk Địa Lí 12 - CTST
- Giải sgk Giáo dục KTPL 12 - CTST
- Giải sgk Tin học 12 - CTST
- Giải sgk Hoạt động trải nghiệm 12 - CTST
- Giải sgk Âm nhạc 12 - CTST
- Lớp 12 Cánh diều
- Soạn văn 12 Cánh diều (hay nhất)
- Soạn văn 12 Cánh diều (ngắn nhất)
- Giải sgk Toán 12 Cánh diều
- Giải sgk Vật Lí 12 - Cánh diều
- Giải sgk Hóa học 12 - Cánh diều
- Giải sgk Sinh học 12 - Cánh diều
- Giải sgk Lịch Sử 12 - Cánh diều
- Giải sgk Địa Lí 12 - Cánh diều
- Giải sgk Giáo dục KTPL 12 - Cánh diều
- Giải sgk Tin học 12 - Cánh diều
- Giải sgk Công nghệ 12 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 12 - Cánh diều
- Giải sgk Giáo dục quốc phòng 12 - Cánh diều
- Giải sgk Âm nhạc 12 - Cánh diều