100 bài tập trắc nghiệm Số phức (có đáp án)



Tổng hợp bài tập trắc nghiệm Số phức lớp 12 có đáp án và lời giải chi tiết đầy đủ các mức độ nhận biết, thông hiểu, vận dụng giúp học sinh ôn tập trắc nghiệm Toán 12.

100 bài tập trắc nghiệm Số phức (có đáp án)

(199k) Xem Khóa học Toán 12 KNTTXem Khóa học Toán 12 CDXem Khóa học Toán 12 CTST

Quảng cáo

Trắc nghiệm tổng hợp Số phức

Quảng cáo

Trắc nghiệm Số phức

Bài 1: Môđun của số phức z = -3 + 4i là

A. 5   B. -3   C. 4   D. 7

Ta có: z = -3 + 4i

Bài tập trắc nghiệm Toán 12 (có lời giải)

Bài 2: Môđun của số phức z = 2 - √3i là

A. √7    B. 2 + √3   C. 2 - √3    D. 7

Ta có: z = 2 - √3i

Bài tập trắc nghiệm Toán 12 (có lời giải)

Bài 3: Số phức z = 1 - 2i có điểm biểu diễn là

A. M (1; 2)   B. M (1; -2)   C. M (-1; 2)   D. M (-1; -2)

Số phức z = 1 - 2i có điểm biểu diễn là M(1; -2).

Bài 4: Hai điểm biểu diễn hai số phức liên hợp z = 1 + i và z = 1 - i đối xứng nhau qua

A. Trục tung    B. Trục hoành   C. Gốc tọa độ   D. Điểm I (1; -1)

Hai điểm biểu diễn của z = 1 + i và z = 1 - i là M(1; 1) và N(1; -1) đối xứng với nhau qua trục Ox.

Quảng cáo

Bài 5: Tập hợp các điểm biểu diễn số phức z thỏa mãn |z| = 2 là

A. Hai đường thẳng   B. Đường tròn bán kính bằng 2

C. Đường tròn bán kính bằng 4   D. Hình tròn bán kính bằng 2.

Gọi M là diểm biểu diễn của z. Ta có: |z| = 2 ⇔ OM = 2

Vậy quỹ tích của M là đường tròn tâm là gốc tọa độ O và bán kính R = 2.

Bài 6: Gọi A, B là các điểm biểu diễn của các số phức z1 = -1 + 2i, z2 = 2 + 3i . Khi đó, độ dài đoạn thẳng AB là

A. √26   B. √5 + √13    C. √10   D. 10

Ta có: A(-1;2), B(2,3). Do đó:

Bài tập trắc nghiệm Toán 12 (có lời giải)

Bài 7: Cho số phức z = 2 – 2i. Tìm khẳng định sai.

A. Phần thực của z là: 2.

B. Phần ảo của z là: -2.

C. Số phức liên hợp của z là z = -2 + 2i.

D. Môđun của z là

Bài tập trắc nghiệm Toán 12 (có lời giải)

Số phức liên hợp của z là z = 2 + 2i nên khẳng định C là sai.

Chọn đáp án C.

Bài 8: Cho số phức z = -1 + 3i. Phần thực, phần ảo của z là

A. -1 và 3    B. -1 và -3    C. 1 và -3    D. -1 và -3i.

Ta có z = -1 + 3i => z = -1 - 3i

Vậy phần thực và phần ảo của z là -1 và -3.

Chọn đáp án B.

Bài 9: Môđun của số phức z thỏa mãn z = 8 - 6i là

A. 2    B. 10    C. 14     D. 2√7

Ta có

Bài tập trắc nghiệm Toán 12 (có lời giải)

Chọn đáp án B.

Quảng cáo

Bài 10: Tìm các số thực x, y sao cho (x – 2y) + (x + y + 4).i = (2x + y) + 2yi.

A. x = 3, y = 1     B. x = 3, y = -1

C. x = -3, y = -1     D. x = -3, y = 1

Ta có (x – 2y) + (x + y + 4).i = (2x + y) + 2yi.

Bài tập trắc nghiệm Toán 12 (có lời giải)

Vậy x = -3, y = 1.

Chọn đáp án D.

Trắc nghiệm Cộng, trừ và nhân số phức

Bài 1: Môđun của tổng hai số phức z1 = 3 - 4i và z2 = 4 + 3i là

A. 5√2   B. 8   C. 10    D. 50.

Ta có: z1 + z2 = (3 + 4) + (-4 + 3)i = 7 - i

Bài tập trắc nghiệm Toán 12 (có lời giải)

Bài 2: Cho z = -1 + 3i . Số phức w = iz + 2z bằng

A. 1 + 5i   B. 1 + 7i   C. – 1 + 5i    D. – 1 + 7i

Ta có: z = -1 + 3i => z = -1 - 3i => iz = - i - 3i2 = 3 - i

Suy ra: w = 2z + z = 3 - i + 2(-1 + 3i) = 1 + 5i

Bài 3: Cho z = 1 + 2i . Phần thực và phần ảo của số phức w = 2z + z là

A. 3 và 2    B. 3 và 2i    C. 1 và 6    D. 1 và 6i

Ta có: w = 2z + z = 2(1 + 2i) + (1 - 2i) = 3 + 2i

Vậy phần thực của w là 3, phần ảo của w là 2

Bài 4: Cho số phức z thỏa mãn (1 + 2i)z + iz = 2i . Khi đó tích z.iz bằng

A. – 2    B. 2    C. – 2i    D. 2i.

Đặt z = a + bi(a, b ∈ R).

Bài tập trắc nghiệm Toán 12 (có lời giải)

Suy ra z = 1 + i. Vậy z.z = |z|2 = 12 + 12 = 2

Bài 5: Môđun của số phức z thỏa mãn 2z + 3(1 - i)iz = 1 - 9i là

A. 5    B. 13     C. √5    D. √13

Đặt z = a + bi (a, b ∈ R). Ta có: z = a - bi và (1 - i)z = (1 - i)(a - bi) = a - bi - ai + bi2 = a - b - (a + b)i Do đó 2z + 3(1 - i)z = 1 - 9i <=> 2(a + bi) + 3[a - b - (a + b)i] = 1 - 9i

<=> (5a - 3b) - (3a + b)i = 1 - 9i

Bài tập trắc nghiệm Toán 12 (có lời giải)

Suy ra z = 2 + 3i. Vậy:

Bài tập trắc nghiệm Toán 12 (có lời giải)

Bài 6: Cho hai số phức z1, z2 thỏa mãn |z1| = |z2| = |z1 + z2| = 1 . Khi đó |z1 - z2| bằng

A. 0    B. 1   C. 2   D. √3

Cách 1: Đặt z1 = a1 + b 1i, z2 = a2 + b2i (a1, a2, b1, b2 ∈ R). Ta có:

Bài tập trắc nghiệm Toán 12 (có lời giải)

Bài tập trắc nghiệm Toán 12 (có lời giải)

Bài tập trắc nghiệm Toán 12 (có lời giải)

Cách 2: Ta có: |z1| = |z2| = 1 => z1z1 = z2z2 = 1

|z1| + |z2| = 1

Bài tập trắc nghiệm Toán 12 (có lời giải)

Do đó

Bài tập trắc nghiệm Toán 12 (có lời giải)

Vậy |z1| - |z2| = √3

Bài 7: Tập hợp các điểm biểu diễn số phức z thỏa mãn |z + 1 - 2i| = 2 là

A. Đường tròn tâm I(1; -2) bán kính R = 2

B. Đường tròn tâm I(1; -2) bán kính R = 4

C. Đường tròn tâm I(-1; 2) bán kính R = 2

D. Đường tròn tâm I(-1; 2) bán kính R = 4

Đặt z = a + bi(a, b ∈ R). Ta có: z + 1 - 2i = (a + 1) + (b - 2)i. Do đó:

|z + 1 - 2i| = 2 <=> (a + 1)2 + (b - 2)2 = 4

Vậy tập hợp điểm M biểu diễn số phức z là đường tròn tâm I(-1 ;2), bán kính R = 2

Bài 8: Cho hai số phức z1 = 2 + 3i, z2 = 1 - 2i . Tìm khẳng định sai

A. z1 + z2 = 3 + i    B. z1 - z2 = 1 + 5i

C. z1.z2 = 8 - i    D.z1. z2 = 8 + i

Tổng của z1 và z2 là z1 + z2 = (2 + 1) + (3 - 2)i = 3 + i

Hiệu của z1 và z2 là z1 - z2 = (2 - 1) + (3 + 2)i = 1 + 5i

Tích của z1 và z2 là z1. z2 = (2 + 3i)(1 - 2i) = 2 - 4i + 3i - 6i2 = 2 - i + 6 = 8 - i

Vậy chọn đáp án D.

Bài 9: Cho hai số phức z1= - 3 + 4i, z2 = 4 - 3i . Môđun của số phức z = z1 + z2 + z1. z2 là

A. 27   B. √27   C. √677   D. 677.

Ta có

Bài tập trắc nghiệm Toán 12 (có lời giải)

Do đó z = z1 + z2 + z1. z2 = 1 + i + 25i = 1 + 26i

Bài tập trắc nghiệm Toán 12 (có lời giải)

Chọn đáp án C.

Bài 10: Tìm các số thực x, y sao cho: (1 - 2i)x + (1 + 2i)y = 1 + i

Bài tập trắc nghiệm Toán 12 (có lời giải)

Ta có

(1 - 2i)x + (1 + 2i)y = 1 + i <=> (x + y) + (2y - 2x)i = 1 + i

Bài tập trắc nghiệm Toán 12 (có lời giải)

Chọn đáp án A.

....................................

....................................

....................................

(199k) Xem Khóa học Toán 12 KNTTXem Khóa học Toán 12 CDXem Khóa học Toán 12 CTST

Xem thêm bài tập trắc nghiệm Toán lớp 12 có đáp án hay khác:

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.




Giải bài tập lớp 12 sách mới các môn học