Giải bài 2 trang 45 sgk Giải tích 12



Bài ôn tập chương I

Bài 2 (trang 45 SGK Giải tích 12): Nêu cách tìm cực đại, cực tiểu của hàm số nhờ đạo hàm. Tìm các cực trị của hàm số:

y = x4 - 2x2 + 2

Quảng cáo

Lời giải:

a) Cách tìm cực đại, cực tiểu của hàm số nhờ đạo hàm:

Quy tắc 1:

1. Tìm tập xác định.

2. Tính f'(x). Tìm các điểm tại đó f'(x) bằng 0 hoặc f'(x) không xác định.

3. Lập bảng biến thiên.

4. Từ bảng biến thiên suy ra các điểm cực trị.

Quảng cáo

Quy tắc 2:

1. Tìm tập xác định.

2. Tính f'(x). Giải phương trình f'(x) = 0 và kí hiệu xi (i = 1, 2, 3, ...) là các nghiệm của nó.

3. Tính f"(x) và f"(xi)

4. Nếu f"(xi) > 0 thì xi là điểm cực tiểu.

Nếu f"(xi) < 0 thì xi là điểm cực đại.

b) Xét hàm số y = x4 - 2x2 + 2, ta có:

y' = 4x3 - 4x = 4x(x2 - 1)

y' = 0 ⇔ 4x(x2 - 1) = 0 ⇔ x = 0; x = ±1

y" = 12x2 - 4

Dựa vào Quy tắc 2, ta có:

y"(0) = -4 < 0 ⇒ x = 0 là điểm cực đại.

y"(-1) = y"(1) = 8 > 0 ⇒ x = ±1 là hai điểm cực tiểu.

Quảng cáo

Tham khảo lời giải các bài tập Toán 12 bài ôn tập khác:

Bài tập

Bài tập trắc nghiệm

Các bài giải Toán 12 Giải tích Tập 1 khác:

ĐỀ THI, GIÁO ÁN, GÓI THI ONLINE DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 12

Bộ giáo án, đề thi, bài giảng powerpoint, khóa học dành cho các thầy cô và học sinh lớp 12, đẩy đủ các bộ sách cánh diều, kết nối tri thức, chân trời sáng tạo tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official


on-tap-chuong-1-giai-tich-12.jsp


Giải bài tập lớp 12 sách mới các môn học
Tài liệu giáo viên