HĐ2 trang 27 Toán 10 Tập 1 - Kết nối tri thức

Giải Toán 10 Kết nối tri thức Bài 4: Hệ bất phương trình bậc nhất hai ẩn

HĐ2 trang 27 Toán 10 Tập 1: Cho đường thẳng d: x + y = 150 trên mặt phẳng tọa độ Oxy. Đường thẳng này cắt hai trục tọa độ Ox và Oy tại hai điểm A và B.

a) Xác định các miền nghiệm D1, D2, D3 của các bất phương trình tương ứng x ≥ 0, y ≥ 0 và x + y ≤ 150.

b) Miền tam giác OAB (H.2.5) có phải là giao của các miền nghiệm D1, D2, D3 hay không?

HĐ2 trang 27 Toán 10 Tập 1 | Kết nối tri thức Giải Toán 10

c) Lấy một điểm trong tam giác OAB (chẳng hạn điểm (1;2)) hoặc một điểm trên cạnh nào đó của tam giác OAB (chẳng hạn điểm (1;149)) và kiểm tra xem tọa độ của các điểm đó có phải là nghiệm của hệ bất phương trình sau hay không:

x0y0x+y150

Quảng cáo

Lời giải:

a) 

+ Trục Oy có phương trình x = 0 và điểm (1; 0) thỏa mãn 1 > 0, do đó miền nghiệm D1 của bất phương trình x ≥ 0 là nửa mặt phẳng bờ Oy chứa điểm (1; 0) (tính cả bờ Oy).

+ Trục Ox có phương trình y = 0 và điểm (0; 1) thỏa mãn 1 > 0, do đó miền nghiệm D2 của bất phương trình y ≥ 0 là nửa mặt phẳng bờ Ox chứa điểm (0; 1) (tính cả bờ Ox).

+ Xác định miền nghiệm D3 của bất phương trình x + y ≤ 150.

- Vẽ đường thẳng d: x + y – 150 = 0.

- Vì 0 + 0 = 0 < 150 nên tọa độ điểm O(0; 0) thỏa mãn bất phương trình x + y ≤ 150 

Do đó miền nghiệm D3 của bất phương trình x + y ≤ 150 là nửa mặt phẳng bờ d chứa gốc tọa độ (tính cả bờ d).

b) Giao điểm của ba miền nghiệm D1, D2, D3 là miền tam giác OAB với O(0;0), A(150;0) và B(0;150)

HĐ2 trang 27 Toán 10 Tập 1 | Kết nối tri thức Giải Toán 10

Do đó miền tam giác OAB (H.2.5) có là giao của các miền nghiệm D1, D2, D3.

c) Điểm (1;2) nằm trong tam giác OAB thỏa mãn x = 1 > 0, y = 2 > 0 và 1 + 2 = 3 < 150 nên cặp số (x; y) = (1;2) thỏa mãn cả ba bất phương trình của hệ bất phương trình đã cho. Do đó nó là một nghiệm của hệ bất phương trình đã cho.

Điểm (1;149) nằm trên một cạnh của tam giác OAB thỏa mãn x = 1 > 0, y = 149 > 0 và 1 + 149 = 150 ≤ 150 nên cặp số (x; y) = (1;149) thỏa mãn cả ba bất phương trình của hệ bất phương trình đã cho. Do đó nó là một nghiệm của hệ bất phương trình đã cho.

Quảng cáo


Lời giải bài tập Toán 10 Bài 4: Hệ bất phương trình bậc nhất hai ẩn hay, chi tiết khác:

Quảng cáo

Các bài học để học tốt Toán 10 Bài 4: Hệ bất phương trình bậc nhất hai ẩn:

Quảng cáo

Xem thêm lời giải bài tập Toán lớp 10 Kết nối tri thức hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 10 hay khác:

ĐỀ THI, GIÁO ÁN, SÁCH LUYỆN THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 10

Bộ giáo án, bài giảng powerpoint, đề thi, sách dành cho giáo viên và gia sư dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài hỗ trợ đăng ký : 084 283 45 85

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 10 Kết nối tri thức khác
Tài liệu giáo viên