Các dạng bài tập Hàm số bậc hai chọn lọc có lời giải
Các dạng bài tập Hàm số bậc hai chọn lọc có lời giải
Phần dưới là Chuyên đề tổng hợp Lý thuyết và Bài tập Toán 10 Đại số Hàm số bậc hai có đáp án. Bạn vào tên bài hoặc Xem chi tiết để theo dõi các chuyên đề Toán lớp 10 Đại số tương ứng.
- Dạng 1: Xác định Hàm số bậc hai Xem chi tiết
- Dạng 2: Xét sự biến thiên và vẽ đồ thị hàm số bậc hai Xem chi tiết
- Dạng 3: Đồ thị hàm số chứa dấu giá trị tuyệt đối và cho bởi nhiều công thức Xem chi tiết
- Dạng 4: Ứng dụng của hàm số bậc hai trong chứng minh bất đẳng thức và tìm giá trị nhỏ nhất, lớn nhất Xem chi tiết
- Bài tập tổng hợp: Bài tập về hàm số bậc hai Xem chi tiết
Cách xác định Hàm số bậc hai
1. Phương pháp giải.
Để xác định hàm số bậc hai ta là như sau
Gọi hàm số cần tìm là y = ax2 + bx + c, a ≠ 0. Căn cứ theo giả thiết bài toán để thiết lập và giải hệ phương trình với ẩn a, b, c từ đó suy ra hàm số cần tìm.
2. Các ví dụ minh họa.
Ví dụ 1. Xác định parabol (P) : y = ax2 + bx + c, a ≠ 0, biết:
a) (P) đi qua A (2; 3) và có đỉnh I (1; 2)
b) c = 2 và (P) đi qua B (3; -4) và có trục đối xứng là x = (-3)/2.
c) Hàm số y = ax2 + bx + c có giá trị nhỏ nhất bằng 3/4 khi x = 1/2 và nhận giá trị bằng 1 khi x = 1.
d) (P) đi qua M (4; 3) cắt Ox tại N (3; 0) và P sao cho ΔINP có diện tích bằng 1 biết hoành độ điểm P nhỏ hơn 3. (I là đỉnh của (P)).
Hướng dẫn:
a) Vì A ∈ (P) nên 3 = 4a + 2b + c
Mặt khác (P) có đỉnh I(1;2) nên:
(-b)/(2a) = 1 ⇔ 2a + b = 0
Lại có I ∈ (P) suy ra a + b + c = 2
Ta có hệ phương trình:
Vậy (P) cần tìm là y = x2 - 2x + 3.
b) Ta có c = 2 và (P) đi qua B(3; -4) nên -4 = 9a + 3b + 2 ⇔ 3a + b = -2
(P) có trục đối xứng là x = (-3)/2 nên (-b)/(2a) = -3/2 ⇔ b = 3a
Ta có hệ phương trình:
Vậy (P) cần tìm là y = (-1)x2/3 - x + 2.
c) Hàm số y = ax2 + bx + c có giá trị nhỏ nhất bằng 3/4 khi x = 1/2 nên ta có:
Hàm số y = ax2 + bx + c nhận giá trị bằng 1 khi x = 1 nên a + b + c = 1 (2)
Từ (1) và (2) ta có hệ phương trình:
Vậy (P) cần tìm là y = x2 - x + 1.
d) Vì (P) đi qua M (4; 3) nên 3 = 16a + 4b + c (1)
Mặt khác (P) cắt Ox tại N (3; 0) suy ra 0 = 9a + 3b + c (2)
Từ (1) và (2) ta có: 7a + b = 3 ⇒ b = 3 - 7a
(P) cắt Ox tại P nên P (t; 0) (t < 3) ⇒ NP = 3 - t
Theo định lý Viét ta có
Ta có:
Thay (*) vào (**) ta được:
(3 - t)3 = 8(4-t)/3 ⇔ 3t3 - 27t2 + 73t - 49 = 0 ⇔ t = 1
Suy ra a = 1; b = - 4; c = 3.
Vậy (P) cần tìm là y = x2 - 4x + 3.
Xét sự biến thiên và vẽ đồ thị hàm số bậc hai
1. Phương pháp giải
Để vẽ đường parabol y = ax2 + bx + c ta thực hiện các bước như sau:
– Xác định toạ độ đỉnh
– Xác định trục đối xứng x = (-b)/(2a) và hướng bề lõm của parabol.
– Xác định một số điểm cụ thể của parabol (chẳng hạn, giao điểm của parabol với các trục toạ độ và các điểm đối xứng với chúng qua trục trục đối xứng).
– Căn cứ vào tính đối xứng, bề lõm và hình dáng parabol để vẽ parabol.
2. Các ví dụ minh họa.
Ví dụ 1: Lập bảng biến thiên và vẽ đồ thị các hàm số sau
a) y = x2 + 3x + 2 b) y = -x2 + 2√2.x
Hướng dẫn:
a) Ta có
Suy ra đồ thị hàm số y = x2 + 3x + 2 có đỉnh làđi qua các điểm A (-2; 0), B(-1; 0), C(0; 2), D (-3; 2)
Đồ thị hàm số nhận đường thẳng x = (-3)/2 làm trục đối xứng và hướng bề lõm lên trên
b) y = -x2 + 2√2.x
Ta có:
Suy ra đồ thị hàm số y = -x2 + 2√2.x có đỉnh là I(√2; 2) đi qua các điểm O (0; 0), B (2√2; 0)
Đồ thị hàm số nhận đường thẳng x = √2 làm trục đối xứng và hướng bề lõm xuống dưới.
Ví dụ 2: Cho hàm số y = x2 - 6x + 8
a) Lập bảng biến thiên và vẽ đồ thị các hàm số trên
b) Sử dụng đồ thị để biện luận theo tham số m số điểm chung của đường thẳng y = m và đồ thị hàm số trên
c) Sử dụng đồ thị, hãy nêu các khoảng trên đó hàm số chỉ nhận giá trị dương
d) Sử dụng đồ thị, hãy tìm giá trị lớn nhất, nhỏ nhất của hàm số đã cho trên [-1; 5]
Hướng dẫn:
a) y = x2 - 6x + 8
Ta có:
Suy ra đồ thị hàm số y = x2 - 6x + 8 có đỉnh là I (3; -1), đi qua các điểm A (2; 0), B(4; 0).
Đồ thị hàm số nhận đường thẳng x = 3 làm trục đối xứng và hướng bề lõm lên trên.
b) Đường thẳng y = m song song hoặc trùng với trục hoành do đó dựa vào đồ thị ta có
Với m < -1 đường thẳng y = m và parabol y = x2 - 6x + 8 không cắt nhau.
Với m = -1 đường thẳng y = m và parabol y = x2 - 6x + 8 cắt nhau tại một điểm (tiếp xúc).
Với m > -1 đường thẳng y = m và parabol y = x2 - 6x + 8 cắt nhau tại hai điểm phân biệt.
c) Hàm số nhận giá trị dương ứng với phần đồ thị nằm hoàn toàn trên trục hoành
Do đó hàm số chỉ nhận giá trị dương khi và chỉ khi x ∈ (-∞;2) ∪ (4; +∞).
d) Ta có y(-1) = 15; y(5) = 13; y(3) = -1, kết hợp với đồ thị hàm số suy ra
Cách vẽ Đồ thị hàm số chứa dấu giá trị tuyệt đối và đồ thị cho bởi nhiều công thức
1. Các ví dụ minh họa.
Ví dụ 1: Vẽ đồ thị của hàm số sau:
Hướng dẫn:
Đồ thị hàm sốgồm:
+ Đường thẳng y = x – 2 đi qua A(2; 0),B(0; -2) và lấy phần nằm bên phải của đường thẳng x = 2.
+ Parabol y = -x2 + 2x có đỉnh I(1; 2), trục đối xứng x = 1, đi qua các điểm O(0;0),C(2;0) và lấy phần đồ thị nằm bên trái của đường thẳng x = 2.
Ví dụ 2: Vẽ đồ thị của hàm số sau: y = |x2 - x - 2|
Hướng dẫn:
Vẽ parabol (P) của đồ thị hàm số y = x2 - x - 2 có đỉnh I(1/2; (-5)/4), trục đối xứng x = 1/2, đi qua các điểm A(-1;0),B (2;0),C (0; -2).
Khi đó đồ thị hàm số y = |x2 - x - 2| gồm: phần parabol (P) nằm phía trên trục hoành và phần đối xứng của (P) nằm dưới trục hoành qua trục hoành.
Ví dụ 3: Vẽ đồ thị của hàm số sau
a) y = x2 - 3|x| + 2
b) y = |x2 - 3|x| + 2|
Hướng dẫn:
a) Vẽ đồ thị hàm số (P): y = x2 - 3x + 2 có đỉnh I(3/2; -1/4), trục đối xứng x = 3/2, đi qua các điểm A(1;0),B(2;0),C(0,2). Bề lõm hướng lên trên.
Khi đó đồ thị hàm số y = x2 - 3|x| + 2 là (P1) gồm phần bên phải trục tung của (P) và phần lấy đối xứng của nó qua trục tung.
b) Đồ thị hàm số y = |x2 - 3|x| + 2| là (P2) gồm phần phía trên trục hoành của (P1) và phần đối xứng của (P1) nằm phía dưới trục hoành qua trục hoành.
Bài tập tự luyện hàm số bậc hai lớp 10
Bài 1. Xác định parabol (P): y = ax2 + c, a ≠ 0, biết (P) đi qua điểm A(2; 3) và có giá trị nhỏ nhất là –2.
Hướng dẫn giải:
Ta có y = ax2 + c ≥ c khi a = 0.
Do đó, giá trị nhỏ nhất của (P) là c = -2.
Vì (P) đi qua điểm A(2; 3) nên ta có: a . 22 – 2 = 3 hay a = .
Vậy ta xác định được parabol (P): y = .
Bài 2. Xác định parabol (P): y = ax2 + bx – 1, a ≠ 0, biết (P) đi qua hai điểm A(1; 2) và B(–1; 3).
Hướng dẫn giải:
(P) đi qua hai điểm A(1; 2) và B(–1; 3) nên ta có
Vậy ta xác định được parabol (P): y = .
Bài 3. Nêu khoảng đồng biến, khoảng nghịch biến của hàm số y = 5x2 + 4x - 1.
Hướng dẫn giải:
Ta có a = 5 > 0, b = 4, c = –1, Δ = b2 - 4ac = 42 - 4.5.(-1) = 36
Bảng biến thiên của hàm số:
Vậy hàm số đã cho nghịch biến trên khoảng và đồng biến trên khoảng .
Bài 4. Lập bảng biến thiên và vẽ đồ thị của hàm số .
Hướng dẫn giải
Ta có
Bảng biến thiên
Suy ra đồ thị hàm số có đỉnh là , đi qua điểm C(0; 4).
Đồ thị hàm số nhận đường thẳng làm trục đối xứng và hướng bề lõm lên trên
Bài 5. Lập bảng biến thiên và vẽ đồ thị của hàm số .
Hướng dẫn giải
Ta có .
Bảng biến thiên
Suy ra đồ thị hàm số có đỉnh là , đi qua điểm C(0; 3); .
Đồ thị hàm số nhận đường thẳng làm trục đối xứng và hướng bề lõm xuống dưới
Bài 6. Lập bảng biến thiên và vẽ đồ thị của hàm số y = -2x2 + 3x + 1.
Bài 7. Nêu khoảng đồng biến, khoảng nghịch biến của hàm số y = -2x2 + 8x + 6.
Bài 8. Tìm khoảng đồng biến, khoảng nghịch biến của hàm số y = x2 - 3x + 4.
Bài 9. Xác định parabol (P): y = ax2 + bx + c, a ≠ 0, biết (P) đi qua A (1; 3) và có đỉnh I(2; 5).
Bài 10. Xác định parabol (P): y = ax2 + c, a ≠ 0, biết (P) cắt trục hoành tại điểm A(0; 2) và cắt trục tung tại điểm B(–1; 0).
Xem thêm các dạng bài tập chương Hàm số bậc nhất và bậc hai khác:
- Chủ đề: Đại cương về hàm số
- Chủ đề: Hàm số bậc nhất
- Bài tập chương: Hàm số bậc nhất và bậc hai (Bài tập tự luận)
- Bài tập chương: Hàm số bậc nhất và bậc hai (Bài tập trắc nghiệm - phần 1)
- Bài tập chương: Hàm số bậc nhất và bậc hai (Bài tập trắc nghiệm - phần 2)
- Bài tập chương: Hàm số bậc nhất và bậc hai (Bài tập trắc nghiệm - phần 3)
Lời giải bài tập lớp 10 sách mới:
- Giải bài tập Lớp 10 Kết nối tri thức
- Giải bài tập Lớp 10 Chân trời sáng tạo
- Giải bài tập Lớp 10 Cánh diều
Tủ sách VIETJACK shopee lớp 10-11 cho học sinh và giáo viên (cả 3 bộ sách):
Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.
Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.
- Giải Tiếng Anh 10 Global Success
- Giải Tiếng Anh 10 Friends Global
- Giải sgk Tiếng Anh 10 iLearn Smart World
- Giải sgk Tiếng Anh 10 Explore New Worlds
- Lớp 10 - Kết nối tri thức
- Soạn văn 10 (hay nhất) - KNTT
- Soạn văn 10 (ngắn nhất) - KNTT
- Soạn văn 10 (siêu ngắn) - KNTT
- Giải sgk Toán 10 - KNTT
- Giải sgk Vật lí 10 - KNTT
- Giải sgk Hóa học 10 - KNTT
- Giải sgk Sinh học 10 - KNTT
- Giải sgk Địa lí 10 - KNTT
- Giải sgk Lịch sử 10 - KNTT
- Giải sgk Kinh tế và Pháp luật 10 - KNTT
- Giải sgk Tin học 10 - KNTT
- Giải sgk Công nghệ 10 - KNTT
- Giải sgk Hoạt động trải nghiệm 10 - KNTT
- Giải sgk Giáo dục quốc phòng 10 - KNTT
- Lớp 10 - Chân trời sáng tạo
- Soạn văn 10 (hay nhất) - CTST
- Soạn văn 10 (ngắn nhất) - CTST
- Soạn văn 10 (siêu ngắn) - CTST
- Giải Toán 10 - CTST
- Giải sgk Vật lí 10 - CTST
- Giải sgk Hóa học 10 - CTST
- Giải sgk Sinh học 10 - CTST
- Giải sgk Địa lí 10 - CTST
- Giải sgk Lịch sử 10 - CTST
- Giải sgk Kinh tế và Pháp luật 10 - CTST
- Giải sgk Hoạt động trải nghiệm 10 - CTST
- Lớp 10 - Cánh diều
- Soạn văn 10 (hay nhất) - Cánh diều
- Soạn văn 10 (ngắn nhất) - Cánh diều
- Soạn văn 10 (siêu ngắn) - Cánh diều
- Giải sgk Toán 10 - Cánh diều
- Giải sgk Vật lí 10 - Cánh diều
- Giải sgk Hóa học 10 - Cánh diều
- Giải sgk Sinh học 10 - Cánh diều
- Giải sgk Địa lí 10 - Cánh diều
- Giải sgk Lịch sử 10 - Cánh diều
- Giải sgk Kinh tế và Pháp luật 10 - Cánh diều
- Giải sgk Tin học 10 - Cánh diều
- Giải sgk Công nghệ 10 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 10 - Cánh diều
- Giải sgk Giáo dục quốc phòng 10 - Cánh diều