Các dạng bài tập Mệnh đề, Tập hợp lớp 10 (chọn lọc, có lời giải)
Tổng hợp Các dạng bài tập Mệnh đề, Tập hợp lớp 10 sách mới Kết nối tri thức, Chân trời sáng tạo, Cánh diều với phương pháp giải chi tiết và bài tập đa dạng giúp học sinh ôn tập, biết cách làm bài tập Mệnh đề và Tập hợp.
Các dạng bài tập Mệnh đề, Tập hợp lớp 10 (chọn lọc, có lời giải)
Bài giảng: Bài 1: Mệnh đề (tiết 1) - Thầy Lê Thành Đạt (Giáo viên VietJack)
Phát biểu định lý, định lý đảo dưới dạng điều kiện cần, điều kiện đủ
Số phần tử của tập hợp. Tập hợp rỗng. Kí hiệu thuộc, không thuộc
Lưu trữ: Các dạng bài tập Mệnh đề lớp 10 (sách cũ)
- Lý thuyết Mệnh đề Xem chi tiết
- Dạng 1: Xác định tính đúng sai của mệnh đề Xem chi tiết
- Dạng 2: Phát biểu mệnh đề điều kiện cần và đủ Xem chi tiết
- Dạng 3: Phủ định mệnh đề Xem chi tiết
- Bài tập tổng hợp về mệnh đề (có đáp án) Xem chi tiết
Cách xác định tính đúng sai của mệnh đề
Phương pháp giải
+ Mệnh đề: xác định giá trị (Đ) hoặc (S) của mệnh đề đó.
+ Mệnh đề chứa biến p(x): Tìm tập hợp D của các biến x để p(x) (Đ) hoặc (S).
Ví dụ minh họa
Ví dụ 1: Trong các câu dưới đây, câu nào là mệnh đề, câu nào không phải là mệnh đề? Nếu là mệnh đề, hãy xác định tính đúng sai.
a) x2 + x + 3 > 0
b) x2 + 2 y > 0
c) xy và x + y
Lời giải:
a) Đây là mệnh đề đúng.
b) Đây là câu khẳng định nhưng chưa phải là mệnh đề vì ta chưa xác định được tính đúng sai của nó (mệnh đề chứa biến).
c) Đây không là câu khẳng định nên nó không phải là mệnh đề.
Ví dụ 2: Xác định tính đúng sai của các mệnh đề sau:
1) 21 là số nguyên tố
2) Phương trình x2 + 1 = 0 có 2 nghiệm thực phân biệt
3) Mọi số nguyên lẻ đều không chia hết cho 2
4) Tứ giác có hai cạnh đối không song song và không bằng nhau thì nó không phải là hình bình hành.
Lời giải:
1) Mệnh đề sai vì 21 là hợp số.
2) Phương trình x2 + 1 = 0 vô nghiệm nên mệnh đề trên sai
3) Mệnh đề đúng.
4) Tứ giác có hai cạnh đối không song song hoặc không bằng nhau thì nó không phải là hình bình hành nên mệnh đề sai.
Ví dụ 3: Trong các câu sau đây, câu nào là mệnh đề, câu nào không phải là mệnh đề. Nếu là mệnh đề thì nó thuộc loại mệnh đề gì và xác định tính đúng sai của nó:
a) Nếu a chia hết cho 6 thì a chia hết cho 2.
b) Nếu tam giác ABC đều thì tam giác ABC có AB = BC = CA.
c) 36 chia hết cho 24 nếu và chỉ nếu 36 chia hết cho 4 và 36 chia hết cho 6.
Lời giải:
a) Là mệnh đề kéo theo (P ⇒ Q) và là mệnh đề đúng, trong đó:
P: "a chia hết cho 6" và Q: "a chia hết cho 2".
b) Là mệnh đề kéo theo (P ⇒ Q) và là mệnh đề đúng, trong đó:
P: "Tam giác ABC đều" và Q: "Tam giác ABC có AB = BC = CA"
c) Là mệnh đề tương đương (P⇔Q) và là mệnh đề sai, trong đó:
P: "36 chia hết cho 24" là mệnh đề sai
Q: "36 chia hết cho 4 và 36 chia hết cho 6" là mệnh đề đúng.
Cách phát biểu mệnh đề điều kiện cần và đủ
Phương pháp giải
Mệnh đề: P ⇒ Q
Khi đó: P là giả thiết, Q là kết luận
Hoặc P là điều kiện đủ để có Q, hoặc Q là điều kiện cần để có P
Ví dụ minh họa
Ví dụ 1:
Xét mệnh đề: "Hai tam giác bằng nhau thì diện tích của chúng bằng nhau"
Hãy phát biểu điều kiện cần, điều kiện đủ, điều kiện cần và đủ.
Lời giải:
1) Điều kiện cần: Hai tam giác có diện tích bằng nhau là điều kiện cần để hai tam giác bằng nhau.
2) Điều kiện đủ: Hai tam giác bằng nhau là điều kiện đủ để hai tam giác đó có diện tích bằng nhau.
3) Điều kiện cần và đủ: Không có
Vì A⇒B: đúng nhưng B⇒A sai, vì " Hai tam giác có diện tích bằng nhau nhưng chưa chắc đã bằng nhau".
Ví dụ 2:
Xét mệnh đề: "Phương trình bậc hai ax2+ bx + c = 0 có nghiệm thì
Δ=b 2 - 4ac ≥ 0". Hãy phát biểu điều kiện cần, điều kiện đủ và điều kiện cần và đủ.
Lời giải:
1) Điều kiện cần: Δ=b2- 4ac ≥ 0 là điều kiện cần để phương trình bậc hai ax2 + bx + c = 0 có nghiệm.
2) Điều kiện đủ: Phương trình bậc hai ax2 + bx + c = 0 có nghiệm là điều kiện đủ để Δ=b2- 4ac ≥ 0.
3) Điều kiện cần và đủ:
Phương trình bậc hai ax2 + bx + c = 0 có nghiệm là điều kiện cần và đủ để
Δ = b 2 - 4ac ≥ 0.
Phủ định của mệnh đề là gì ? Cách giải bài tập Phủ định mệnh đề
Phương pháp giải
Mệnh đề phủ định của P là "Không phải P". Mệnh đề phủ định của "∀x ∈ X,P(x)" là: "∃x ∈ X,P(x)−−−−−− "
Mệnh đề phủ định của "∃x ∈ X,P(x)" là "∀x ∈ X,P(x)−−−−−−"
Ví dụ minh họa
Ví dụ 1: Phát biểu các mệnh đề phủ định của các mệnh đề sau:
A: n chia hết cho 2 và cho 3 thì nó chia hết cho 6.
B: √2 là số thực
C: 17 là một số nguyên tố.
Lời giải:
A−: n không chia hết cho 2 hoặc không chia hết cho 3 thì nó không chia hết cho 6.
B− : √2 không là số thực.
C−: 17 không là số nguyên tố.
Ví dụ 2: Phủ định các mệnh đề sau và cho biết tính (Đ), (S)
A: ∀x ∈ R: 2x + 3 ≥ 0
B: ∃x ∈ R: x2 + 1 = 0
Lời giải:
A−:∃x ∈ R: 2x + 3 < 0 (Đ)
B− :∀x ∈ R: x2 + 1 ≠ 0 (Đ)
Ví dụ 3: Nêu mệnh đề phủ định của các mệnh đề sau và xác định xem mệnh đề phủ định đó đúng hay sai:
a) Phương trình x2 - 3x + 2 = 0 có nghiệm.
b) 210 - 1 chia hết cho 11.
c) Có vô số số nguyên tố.
Lời giải:
a) Phương trình x2 - 3x + 2 = 0 vô nghiệm. Mệnh đề phủ định sai vì phương trình có 2 nghiệm x = 1; x = 2.
b) 210 - 1 không chia hết cho 11. Mệnh đề phủ định sai.
c) Có hữu hạn số nguyên tố, mệnh đề phủ định sai.
Xem thêm các dạng bài tập Toán 10 có đáp án hay khác:
- Các dạng bài tập Bất phương trình và hệ bất phương trình bậc nhất hai ẩn
- Các dạng bài tập Hàm số bậc hai và đồ thị
- Các dạng bài tập Hệ thức lượng trong tam giác
- Các dạng bài tập Vectơ
- Các dạng bài tập Thống kê
- Các dạng bài tập Hàm số, đồ thị và ứng dụng
- Các dạng bài tập Phương pháp tọa độ trong mặt phẳng
- Các dạng bài tập Đại số tổ hợp
- Các dạng bài tập tính xác suất
Lời giải bài tập lớp 10 sách mới:
- Giải bài tập Lớp 10 Kết nối tri thức
- Giải bài tập Lớp 10 Chân trời sáng tạo
- Giải bài tập Lớp 10 Cánh diều
Tủ sách VIETJACK shopee lớp 10-11 cho học sinh và giáo viên (cả 3 bộ sách):
Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.
Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.
- Giải Tiếng Anh 10 Global Success
- Giải Tiếng Anh 10 Friends Global
- Giải sgk Tiếng Anh 10 iLearn Smart World
- Giải sgk Tiếng Anh 10 Explore New Worlds
- Lớp 10 - Kết nối tri thức
- Soạn văn 10 (hay nhất) - KNTT
- Soạn văn 10 (ngắn nhất) - KNTT
- Soạn văn 10 (siêu ngắn) - KNTT
- Giải sgk Toán 10 - KNTT
- Giải sgk Vật lí 10 - KNTT
- Giải sgk Hóa học 10 - KNTT
- Giải sgk Sinh học 10 - KNTT
- Giải sgk Địa lí 10 - KNTT
- Giải sgk Lịch sử 10 - KNTT
- Giải sgk Kinh tế và Pháp luật 10 - KNTT
- Giải sgk Tin học 10 - KNTT
- Giải sgk Công nghệ 10 - KNTT
- Giải sgk Hoạt động trải nghiệm 10 - KNTT
- Giải sgk Giáo dục quốc phòng 10 - KNTT
- Lớp 10 - Chân trời sáng tạo
- Soạn văn 10 (hay nhất) - CTST
- Soạn văn 10 (ngắn nhất) - CTST
- Soạn văn 10 (siêu ngắn) - CTST
- Giải Toán 10 - CTST
- Giải sgk Vật lí 10 - CTST
- Giải sgk Hóa học 10 - CTST
- Giải sgk Sinh học 10 - CTST
- Giải sgk Địa lí 10 - CTST
- Giải sgk Lịch sử 10 - CTST
- Giải sgk Kinh tế và Pháp luật 10 - CTST
- Giải sgk Hoạt động trải nghiệm 10 - CTST
- Lớp 10 - Cánh diều
- Soạn văn 10 (hay nhất) - Cánh diều
- Soạn văn 10 (ngắn nhất) - Cánh diều
- Soạn văn 10 (siêu ngắn) - Cánh diều
- Giải sgk Toán 10 - Cánh diều
- Giải sgk Vật lí 10 - Cánh diều
- Giải sgk Hóa học 10 - Cánh diều
- Giải sgk Sinh học 10 - Cánh diều
- Giải sgk Địa lí 10 - Cánh diều
- Giải sgk Lịch sử 10 - Cánh diều
- Giải sgk Kinh tế và Pháp luật 10 - Cánh diều
- Giải sgk Tin học 10 - Cánh diều
- Giải sgk Công nghệ 10 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 10 - Cánh diều
- Giải sgk Giáo dục quốc phòng 10 - Cánh diều