Cách tìm số hạng đầu tiên, công sai, số hạng thứ k của cấp số cộng cực hay

Bài viết Cách tìm số hạng đầu tiên, công sai, số hạng thứ k của cấp số cộng với phương pháp giải chi tiết giúp học sinh ôn tập, biết cách làm bài tập Cách tìm số hạng đầu tiên, công sai, số hạng thứ k của cấp số cộng.

Cách tìm số hạng đầu tiên, công sai, số hạng thứ k của cấp số cộng cực hay

A. Phương pháp giải

Quảng cáo

+ Dãy số (un) là cấp số cộng khi và chỉ khi un+1 − un = d không phụ thuộc vào n và d là công sai.

+ Cho cấp số cộng có số hạng đầu là u1; công sai d. Khi đó; số hạng thứ n của cấp số cộng là: un = u1 + (n−1)d

+ Nếu biết số hạng thứ n và thứ m của dãy ta suy ra:

Cách tìm số hạng đầu tiên, công sai, số hạng thứ k của cấp số cộng cực hay

Giải hệ phương trình trên ta được u1 và công sai d.

B. Ví dụ minh họa

Ví dụ 1: Cho một cấp số cộng có u1 = −1 và u5 = 11. Tìm công sai của cấp số cộng ?

A. d= 3    B. d= 5    C. d= 4    D. d= 2

Hướng dẫn giải:

Ta có: u5 = u1 + (5−1)d

=> 11 = − 1 + 4d ⇔ d= 3

Chọn A.

Ví dụ 2: Cho một cấp số cộng có u1 = 10; u7 = −8. Tìm d?

A. d= −2    B. d = −3    C. d = 2    D.d = 3

Hướng dẫn giải:

Ta có: u7 = u1 +(7−1)d

=> −8 = 10 + 6d

⇔ −18 = 6d nên d = −3

Chọn B.

Quảng cáo

Ví dụ 3: Cho cấp số cộng (un) có u1 = 0,4 và công sai d = 1. Số hạng thứ 10 của cấp số cộng này là:

A. 1,6    B. 1,4    C. 10,4    D. 9,4

Hướng dẫn giải:

Số hạng tổng quát của cấp số cộng (un) là: un = u1 + (n − 1) d

=>số hạng thứ 10 của cấp số cộng là:

u10 = 0,4 +(10 − 1) . 1 = 9,4

Chọn D.

Ví dụ 4: Cho cấp số cộng (un) có u1 = −2 và công sai d = 3. Hỏi có bao nhiêu số hạng của cấp số thỏa mãn un < 11.

A.3     B. 4     C.5     D.6

Hướng dẫn giải:

Cấp số cộng có u1 = −2 và công sai d = 3 nên số hạng tổng quát của cấp số cộng là:

un = u1 + (n − 1) . d = −2 + 3(n − 1) = 3n − 5

Để un < 11 thì 3n − 5 < 11

Cách tìm số hạng đầu tiên, công sai, số hạng thứ k của cấp số cộng cực hay

Mà n nguyên dương nên n ∈ { 1,2,3,4,5}

Vậy có 5 số hạng của cấp số cộng thỏa mãn điều kiện

Chọn C.

Ví dụ 5: Viết ba số xen giữa các số 2 và 22 để được cấp số cộng có 5 số hạng. Tính tổng của ba số hạng xen giữa đó.

A. 36     B.28    C. 32    D.30

Hướng dẫn giải:

Khi viết ba số xen giữa hai số 2 và 22 để được cấp số cộng có 5 số hạng thì:

u1 = 2 và u5 = 22.

+ Lại có: u5 = u1 + (5 − 1) d nên 22 = 2 + 4d

⇔ 20 = 4d ⇔ d= 5

+Suy ra: u2 = u1 + d = 2 + 5= 7

u3 = u1 + 2d = 2 + 2 . 5 = 12

Và u4 = u1 + 3d = 2 + 3 . 5 = 17

=> u2 + u3 +u4 = 7 + 12 + 17 = 36

Chọn A.

Quảng cáo

Ví dụ 6: Cho dãy số (un) với un = 7 − 2n. Khẳng định nào sau đây là sai?

A. 3 số hạng đầu của dãy u1 = 5; u2 = 3 và u3 = 1.

B. Số hạng thứ n + 1 là un+1 = 8 − 2n.

C. Là cấp số cộng có d = −2.

D. Số hạng thứ 4: u4 = −1.

Hướng dẫn giải:

* Ta có:

Cách tìm số hạng đầu tiên, công sai, số hạng thứ k của cấp số cộng cực hay

=> đáp án A, D đúng.

*Số hạng thứ n+1 là: un + 1 = 7 − 2(n+1) = 5 − 2n

=> B sai.

* Xét hiệu: un+1 − un = (5−2n) − (7 − 2n)= −2

=> (un) là cấp số cộng với công sai d = −2.

=> C đúng.

Ví dụ 7: Cho cấp số cộng (un) có u3 = −15 và u14 = 18. Tìm u1, d của cấp số cộng?

A. u1 = −21; d = 3    B. u1 = −20; d = 2

C. u1 = −21; d = −3    D. u1 = −20 ; d = −2

Hướng dẫn giải:

Ta có: Cách tìm số hạng đầu tiên, công sai, số hạng thứ k của cấp số cộng cực hay

Từ giả thiết suy ra: Cách tìm số hạng đầu tiên, công sai, số hạng thứ k của cấp số cộng cực hay

Chọn A.

Ví dụ 8: Cho cấp số cộng ( un) thỏa mãn : Cách tìm số hạng đầu tiên, công sai, số hạng thứ k của cấp số cộng cực hay . Tìm số hạng thứ 10 của cấp số.

A. 39     B.27

C. 36     D.42

Hướng dẫn giải:

Theo giả thiết ta có:

Cách tìm số hạng đầu tiên, công sai, số hạng thứ k của cấp số cộng cực hay

=> Số hạng thứ 10 của cấp số cộng là :

u10 = u1 + 9d = 3 + 9 . 4 = 39

Chọn A.

Ví dụ 9: Cho cấp số cộng (un) thỏa mãn : Cách tìm số hạng đầu tiên, công sai, số hạng thứ k của cấp số cộng cực hay . Hỏi 301 là số hạng thứ bao nhiêu của cấp số cộng.

A.99     B.100

C.101     D.103

Hướng dẫn giải:

Theo giả thiết ta có:

Cách tìm số hạng đầu tiên, công sai, số hạng thứ k của cấp số cộng cực hay

Ta có : 301 = 1 + (n − 1) . 3 ⇔ 300 = 3(n-1)

⇔ n − 1 = 100 ⇔ n = 101

Vậy 301 là số hạng thứ 101 của cấp số cộng.

Chọn C.

Ví dụ 10: Cho cấp số cộng (un) thỏa mãn Cách tìm số hạng đầu tiên, công sai, số hạng thứ k của cấp số cộng cực hay . Tìm số hạng thứ 6 của cấp số cộng ?

A.8     B.10

C. 6     D. 12

Hướng dẫn giải:

Theo giả thiết ta có :

Cách tìm số hạng đầu tiên, công sai, số hạng thứ k của cấp số cộng cực hay

Từ (1) suy ra : u1 = 8 − 5d thay vào (2) ta được : Cách tìm số hạng đầu tiên, công sai, số hạng thứ k của cấp số cộng cực hay

Với Cách tìm số hạng đầu tiên, công sai, số hạng thứ k của cấp số cộng cực hay

Số hạng thứ 6 là: Cách tìm số hạng đầu tiên, công sai, số hạng thứ k của cấp số cộng cực hay

Với d = 2 => u1 = −2

Số hạng thứ 6: u6 = −2 + 5 . 2 = 8

Chọn A.

Quảng cáo

Ví dụ 11: Cho cấp số cộng (un) thỏa mãn điều kiện: Cách tìm số hạng đầu tiên, công sai, số hạng thứ k của cấp số cộng cực hay . Tìm công sai của cấp số cộng đã cho.

A.d = ±1     B.d = ±2     C .d = ±3     D. d = ±4

Hướng dẫn giải:

Theo đề bài ta có:

Cách tìm số hạng đầu tiên, công sai, số hạng thứ k của cấp số cộng cực hay Cách tìm số hạng đầu tiên, công sai, số hạng thứ k của cấp số cộng cực hay Cách tìm số hạng đầu tiên, công sai, số hạng thứ k của cấp số cộng cực hay

Từ (1) suy ra: u1 + 2d = 4 ⇔ u1 = 4 − 2d thế vào (2) ta được:

Cách tìm số hạng đầu tiên, công sai, số hạng thứ k của cấp số cộng cực hay Cách tìm số hạng đầu tiên, công sai, số hạng thứ k của cấp số cộng cực hay Cách tìm số hạng đầu tiên, công sai, số hạng thứ k của cấp số cộng cực hay

* Với d = 3 => u1 = 4 − 6 = −2

* Với d = −3 => u1 = 4 + 6 = 10

Chọn C.

C. Bài tập trắc nghiệm

Câu 1: Cho cấp số cộng (un) có u4 = −20; u19 = 55 . Tìm u1, d của cấp số cộng?

A. u1 = −35; d = 5    B. u1 = −35; d = −5

C. u1 = 35; d = 5    D. u1 = 35; d = −5

Lời giải:

Đáp án: A

Ta có: Cách tìm số hạng đầu tiên, công sai, số hạng thứ k của cấp số cộng cực hay

Từ giả thiết suy ra: Cách tìm số hạng đầu tiên, công sai, số hạng thứ k của cấp số cộng cực hay

Câu 2: Cho (un) là cấp số cộng thỏa mãn : Cách tìm số hạng đầu tiên, công sai, số hạng thứ k của cấp số cộng cực hay . Tìm số hạng thứ 2 của cấp số cộng.

A.6     B.7

C .8     D. 9

Lời giải:

Đáp án: B

Theo giả thiết ta có: Cách tìm số hạng đầu tiên, công sai, số hạng thứ k của cấp số cộng cực hay

=> Số hạng thứ hai của cấp số cộng là:

u2 = u1 + d = 3 + 4 = 7

Câu 3: Cho (un) là cấp số cộng thỏa mãn : Cách tìm số hạng đầu tiên, công sai, số hạng thứ k của cấp số cộng cực hay . Tìm số hạng thứ 20 của cấp số cộng.

A.67     B.75

C. 87     D. 91

Lời giải:

Đáp án: C

Theo giả thiết ta có:

Cách tìm số hạng đầu tiên, công sai, số hạng thứ k của cấp số cộng cực hay

Số hạng thứ 20 của cấp số cộng là: u20 = u1 + 19d = 87

Câu 4: Tìm ba số hạng liên tiếp của một cấp số cộng biết tổng của chúng bằng −9 và tổng các bình phương của chúng bằng 29.

A. 0 ; −3 ; −6    B. −2 ; −3 ; −4

C. −1; −2 ; −3    D. −3 ; −2 ; −1

Lời giải:

Đáp án: B

Gọi ba số hạng của cấp số cộng là a − 2d; a ; a + 2d

Theo giả thiết ta có :

Cách tìm số hạng đầu tiên, công sai, số hạng thứ k của cấp số cộng cực hay

+ Nếu Cách tìm số hạng đầu tiên, công sai, số hạng thứ k của cấp số cộng cực hay thì ba số hạng cần tìm là : −4 ; −3 ; −2.

+ Nếu Cách tìm số hạng đầu tiên, công sai, số hạng thứ k của cấp số cộng cực hay thì ba số hạng cần tìm là : −2 ; −3 ; −4.

Câu 5: Cho cấp số cộng (un) thỏa mãn Cách tìm số hạng đầu tiên, công sai, số hạng thứ k của cấp số cộng cực hay . Tìm u1 ;d biết u1 > 0

A. u1 = 3; d= 1    B. u1 = 3; d = 2

C. u1 = 2; d = 3    D. u1 = 2; d = −3

Lời giải:

Đáp án: B

Theo giả thiết Cách tìm số hạng đầu tiên, công sai, số hạng thứ k của cấp số cộng cực hay Cách tìm số hạng đầu tiên, công sai, số hạng thứ k của cấp số cộng cực hay

Vậy u1 = 3 và d = 2.

Câu 6: Cho cấp số cộng (un) có công sai d > 0 và Cách tìm số hạng đầu tiên, công sai, số hạng thứ k của cấp số cộng cực hay . Hãy tìm số hạng tổng quát của cấp số cộng đó.

A. un = 3n − 9    B. un = 3n − 42

C. un = 3n − 67    D. un = 3n − 92

Lời giải:

Đáp án: D

Ta có: Cách tìm số hạng đầu tiên, công sai, số hạng thứ k của cấp số cộng cực hay

Từ (1) suy ra : u31 = 11 − u34 thế vào (2) ta được:

Cách tìm số hạng đầu tiên, công sai, số hạng thứ k của cấp số cộng cực hay

+ Mà công sai d > 0 nên u34 > u31

=> u34 = 10 và u31 = 1

Suy ra: Cách tìm số hạng đầu tiên, công sai, số hạng thứ k của cấp số cộng cực hay

Vậy số hạng tổng quát của dãy số là :

un = u1 + (n-1)d= −89 + 3(n-1) = 3n - 92

Câu 7: Cho cấp số cộng (un) có u2 + u3 = 20; u5 + u7 = −29 . Tìm u1 ; d?

A. u1 = 20; d = 7    B. u1 = 20;d = 7

C. u1 = 20,5; d = −7    D. u1 = −20,5; d= 7

Lời giải:

Đáp án: C

Áp dụng công thức un = u1 + (n - 1)d ta có:

Cách tìm số hạng đầu tiên, công sai, số hạng thứ k của cấp số cộng cực hay

Câu 8: Tam giác ABC có ba góc A, B, C theo thứ tự đó lập thành cấp số cộng và C = 5A. Tính tổng số đo của góc có số đo lớn nhất và góc có số đo nhỏ nhất.

A. 1400    B. 1200

C. 1350    D. 1500

Lời giải:

Đáp án: B

Do số đo ba góc A ; B ; C theo thứ tự lập thành cấp số cộng nên: A + C = 2B.

Tổng số đo ba góc trong một tam giác bằng 1800 nên : A + B + C = 180

Từ giả thiết bài toán ta có hệ phương trình :

Cách tìm số hạng đầu tiên, công sai, số hạng thứ k của cấp số cộng cực hay

Suy ra ; tổng số đo góc lớn nhất và góc nhỏ nhất là 1200

Câu 9: Cho (un) là cấp số cộng thỏa mãn : Cách tìm số hạng đầu tiên, công sai, số hạng thứ k của cấp số cộng cực hay . Tính tổng của số hạng đầu tiên và công sai d ?

A. 3    B. 4

C. 5     D .6

Lời giải:

Đáp án: B

Theo giả thiết ta có :

Cách tìm số hạng đầu tiên, công sai, số hạng thứ k của cấp số cộng cực hay

Câu 10: Cho (un) là cấp số cộng, u1; u2; u3 là 3 số hạng của cấp số cộng thỏa mãn: Cách tìm số hạng đầu tiên, công sai, số hạng thứ k của cấp số cộng cực hay . Tìm tích 3 số đó?

A.15     B. 20

C. 21     D. 18

Lời giải:

Đáp án: A

Gọi 3 số cần tìm là: u1 = a − d; u2 = a; u3 = a + d

Theo giả thiết ta có:

Cách tìm số hạng đầu tiên, công sai, số hạng thứ k của cấp số cộng cực hay

Với d = 2 thì 3 số cần tìm là 1; 3; 5

Với d = −2 thì 3 số cần tìm là 5; 3; 1.

Trong cả 2 trường hợp thì tích của 3 số đó là 15

Câu 11: Cho dãy số (un) là cấp số cộng thỏa mãn: Cách tìm số hạng đầu tiên, công sai, số hạng thứ k của cấp số cộng cực hay Tính số hạng thứ 4 của cấp số cộng.

A.3 hoặc −1     B. 2 hoặc −2.

C.2 hoặc −3     D. −2 hoặc 1.

Lời giải:

Đáp án: A

Theo giả thiết ta có:

Cách tìm số hạng đầu tiên, công sai, số hạng thứ k của cấp số cộng cực hay Cách tìm số hạng đầu tiên, công sai, số hạng thứ k của cấp số cộng cực hay

Từ (1) suy ra : 2u1 + 4d = 2 ⇔ u1 + 2d = 1 ⇔ u1 = 1 − 2d thay vào (2) ta được:

Cách tìm số hạng đầu tiên, công sai, số hạng thứ k của cấp số cộng cực hay Cách tìm số hạng đầu tiên, công sai, số hạng thứ k của cấp số cộng cực hay

Đặt t= d2 khi đó phương trình (*) trở thành:

Cách tìm số hạng đầu tiên, công sai, số hạng thứ k của cấp số cộng cực hay

+ Với t = 4 => d2 = 4 ⇔ d = ±2

* Với d = 2 => u1 = −3. Khi đó u4 = u1 + 3d = 3.

* Với d = −2 => u1 = 5. Khi đó u4 = u1 + 3d = −1.

Vậy số hạng thứ 4 của cấp số cộng là 3 hoặc −1 .

Câu 12: Cho 2 cấp số cộng : 5 ;8 ;11 ; .....và 3 ;7 ;11,.... Hỏi trong 100 số hạng đầu tiên của mỗi cấp số ; có bao nhiêu số hạng chung ?

A. 23     B. 24

C. 25     D. Tất cả sai

Lời giải:

Đáp án: C

Giả sử un là số hạng thứ n của cấp số cộng thứ nhất: un = 5 + 3(n − 1) và vm = 3 + (m − 1) . 4 là số hạng thứ m của cấp số cộng thứ 2.

un = vm khi và chỉ khi:

Cách tìm số hạng đầu tiên, công sai, số hạng thứ k của cấp số cộng cực hay

Đặt Cách tìm số hạng đầu tiên, công sai, số hạng thứ k của cấp số cộng cực hay

Vì m; n không lớn hơn 100 nên:

Cách tìm số hạng đầu tiên, công sai, số hạng thứ k của cấp số cộng cực hay

Kết hợp với t là số nguyên dương nên

Tương ứng với 25 giá trị của t ta được 25 số hạng chung của 2 dãy (un); (vm) .

D. Bài tập tự luyện

Bài 1. Cho cấp số cộng có u1 = -3; u10 = 24. Tìm công sai d?

Bài 2. Cho cấp số cộng (un) với un = 2n + 5.

a) Tìm u1 và d.

b) Tính tổng 40 số hạng đầu tiên.

c) Biết Sn = 187, tìm n.

Bài 3. Tìm công sai của cấp số cộng thỏa mãn: u1u3+u5=10u1+u6=17.

Bài 4. Tìm công sai của cấp số cộng sau, biết: u7u3=8u2u7=75.

Bài 5. Tìm số hạng u1 và công sai d của cấp số cộng sau, biết: u7+u15=60u42+u122=1170

Bài 6. Tìm số hạng đầu u1 và công sai d của cấp số cộng (un), biết: 5u1+10u5=0S4=14.

Bài 7. Tìm số hạng đầu u1 và công sai d của cấp số cộng (un), biết: u5=184Sn=S2n.

Bài 8. Tìm số hạng đầu u1 và công sai d của cấp số cộng (un), biết: Sn = 5n2 + 3n.

Bài 9. Tìm số hạng đầu và công sai của cấp số cộng biết: S4 = 38, S7 = 119 trong đó Sn là tổng của n số hạng.

Bài 10. Cho biết số hạng đầu u1 và công sai d của cấp số cộng dưới đây:

a) 1, 3, 5, 7, 9, 11, 13.

b) 14, 12, 10, 8, 6, 4, 2, 0.

Bài 11. Tìm công sai của các cấp số cộng sau:

a) 2, 4, 6, 8, 10, 12.

b) -9, -7, -5, -3, -1, 1, 3, 5, 7, 9.

Bài 12. Cho cấp số cộng (un) có u1 = -3, u6 = 27. Tính công sai d.

Bài 13. Cho cấp số cộng (un) có u1 = -3, u10 = 24. Tính công sai d.

Bài 14. Cho cấp số cộng (un) với: u2u3+u5=10u3+u4=17.

Tìm công sai d của cấp số cộng trên?

Bài 15. Cho cấp số cộng có các số hạng lần lượt là -4, 1, 6, x. Giá trị của x bằng bao nhiêu và tính công sai của cấp số cộng đã cho.

Bài 16. Xác định số hạng đầu u1 và công sai d của cấp số cộng (un) có u9 = 5u12 và u13 = 2u6 + 5.

Bài 17. Cho cấp số cộng (un) có số hạng thứ 4 (u4) là -20 và số hạng thứ 19 (u19) là 55. Tìm giá trị của u1 và d.

Bài 18. Cho (un) là cấp số cộng thỏa mãn: uk = 3n - 9. Tính số hạng đầu tiên và số hạng thứ 10 của cấp số cộng.

Bài 19. Xác định số hạng đầu của cấp số cộng có công sai d là 3, số hạng cuối là 12, và có tổng bằng 30.

Bài 20. Tìm số hạng đầu u­1 và công sai d của cấp số cộng (un) biết: u7+u5=60u42+u122=1170

Xem thêm các dạng bài tập Toán lớp 11 có trong đề thi THPT Quốc gia khác:

ĐỀ THI, GIÁO ÁN, SÁCH LUYỆN THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 11

Bộ giáo án, bài giảng powerpoint, đề thi, sách dành cho giáo viên và gia sư dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài hỗ trợ đăng ký : 084 283 45 85

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.

day-so-cap-so-cong-va-cap-so-nhan.jsp

Giải bài tập lớp 11 sách mới các môn học
Tài liệu giáo viên