Cách xét Tính chẵn, lẻ và chu kì của hàm số lượng giác cực hay
Bài viết Cách xét Tính chẵn, lẻ và chu kì của hàm số lượng giác với phương pháp giải chi tiết giúp học sinh ôn tập, biết cách làm bài tập Cách xét Tính chẵn, lẻ và chu kì của hàm số lượng giác.
Cách xét Tính chẵn, lẻ và chu kì của hàm số lượng giác cực hay
A. Phương pháp giải & Ví dụ
a. Tính tuần hoàn và chu kì:
Định nghĩa: Hàm số y = f(x) có tập xác định được gọi là hàm số tuần hoàn, nếu tồn tại một số T≠0 sao cho với mọi x ∈ D ta có:
♦ (x- T) ∈ D và (x + T) ∈ D
♦ f (x + T) = f(x).
Số dương T nhỏ nhất thỏa mãn các tính chất trên được gọi là chu kì của hàm số tuần hoàn đó. Người ta chứng minh được rằng hàm số y = sinx tuần hoàn với chu kì T = 2 π ; hàm số y = cosx tuần hoàn với chu kì T = 2 π; hàm số y = tanx tuần hoàn với chu kì T = π; hàm số y = cotx tuần hoàn với chu kì T = π
Chú ý:
Hàm số y = sin(ax + b) tuần hoàn với chu kì T =
Hàm số y = cos(ax + b) tuần hoàn với chu kì T =
Hàm số y = tan(ax + b) tuần hoàn với chu kì T =
Hàm số y = cot(ax + b) tuần hoàn với chu kì T =
Hàm số y = f1(x) tuần hoàn với chu kì T1 và hàm số y = f2(x) tuần hoàn với chu kì T2 thì hàm số y = f1(x) ± f2(x) tuần hoàn với chu kì T0 là bội chung nhỏ nhất của T1 và T2 .
b. Hàm số chẵn, lẻ:
Định nghĩa:
Hàm số y = f(x) có tập xác định là D được gọi là hàm số chẵn nếu:
♦ x ∈ D và – x ∈ D.
♦ f(x) = f(-x).
Hàm số y = f(x) có tập xác định là D được gọi là hàm số lẻ nếu:
♦ x ∈ D và – x ∈ D.
♦ f(x) = - f(-x).
Ví dụ minh họa
Bài 1: Xét tính tuần hoàn và tìm chu kì cơ sở của các hàm số sau:
Hướng dẫn giải
a. Hàm số đã cho tuần hoàn với chu kì T = 2π/2 = π.
b.
Ta có hàm số y = cosx tuần hoàn với chu kì T = 2 π , hàm số y = cos2x tuần hoàn với chu kì T = π. Vậy hàm số đã cho tuần hoàn với chu kì T = 2 π .
Bài 2: Xét tính tuần hoàn và tìm chu kì cơ sở của các hàm số sau: y = cosx + cos√3x.
Hướng dẫn giải
Giả sử hàm số đã cho tuần hoàn với chu kì T ≠ 0. Khi đó ta có:
cos(x + T) + cos[√3(x +T)] = cosx + cos√3x.
Cho x = 0. Ta có: cosT + cos√3T = 2. Vì cosx ≤ 1 với mọi x nên ta có:
mà m, k ∈ Z (vô lý). Vậy hàm số đã cho không tuần hoàn.
Bài 3: Xét tính chẵn lẻ của các hàm số sau:
a. y = sinx.
b. y = cos(2x).
c. y = tanx + cos(2x + 1).
Hướng dẫn giải
a. Tập xác định D = R. Lấy x ∈ D thì – x ∈ D. Ta có: sin (-x) = -sinx. Vậy hàm số đã cho là hàm số lẻ.
b. Tập xác định D = R. Lấy x ∈ D thì – x ∈ D. Ta có: cos(-2x) = cos(2x). Vậy hàm số đã cho là hàm số chẵn.
c.
Lấy x ∈ D thì – x ∈ D. Ta có:
tan(-x) + cos(-2x + 1) = -tanx + cos(-2x + 1).
Vậy hàm số đã cho không chẵn, không lẻ.
B. Bài tập vận dụng
Bài 1: Xét tính tuần hoàn và tìm chu kì cơ sở của các hàm số sau:
a) y = cos(-2x +4)
b) y = tan(7x + 5)
Lời giải:
a) Hàm số đã cho làm hàm tuần hoàn với chu kì T = 2π/2 = π
b) Hàm số đã cho làm hàm tuần hoàn với chu kì T =π /7.
Bài 2: Xét tính tuần hoàn và tìm chu kì cơ sở của hàm số sau: y = sinx + sin3x
Lời giải:
Ta có y = sinx là hàm tuần hoàn với chu kì T = 2 π và hàm số y = sin3x là hàm tuần hoàn với chu kì T = (2 π)/3. Vậy hàm số đã cho là hàm tuần hoàn với chu kì T = 2 π .
Bài 3: Xét tính tuần hoàn và tìm chu kì cơ sở của các hàm số sau: y = cosx + 2sin5x
Lời giải:
Làm tương tự bài 2 và sử dụng chú ý phần tính tuần hoàn và chu kì, ta có hàm số đã cho là hàm tuần hoàn với chu kì T = 2 π .
Bài 4: Xét tính chẵn, lẻ của các hàm số sau:
a) y = cosx + cos2x
b) y = tanx + cotx.
Lời giải:
a) Ta có tập xác định của hàm số là D = R.
cos(-x) + cos(-2x) = cosx + cos2x. Vậy hàm số đã cho là hàm số chẵn.
b) Ta có tập xác định của hàm số là D = R\{k π/2, k ∈ Z}.
tan(-x) + cot(-x) = - tanx – cotx. Vậy hàm số đã cho là hàm số lẻ.
Bài 5: Xét tính chẵn, lẻ của các hàm số sau:
a) y = cosx + sinx.
b) y = sin2x + cot100x
Lời giải:
a) Ta có tập xác định của hàm số là D = R.
sin (-x) + cos(-x) = - sinx + cosx. Vậy hàm số đã cho là hàm không chẵn, không lẻ.
b) Ta có tập xác định của hàm số là D = R\{k π /100, k ∈ Z}.
sin(-2x) + cot(-100x) = - sin2x – cot(100x). Vậy hàm số đã cho là hàm số lẻ.
C. Bài tập tự luyện
Bài 1. Xét tính chẵn lẻ của hàm số: f(x) = .
Bài 2. Xét tính chẵn lẻ của hàm số: y = 2sin2x + 3cosx.
Bài 3. Xét tính chẵn lẻ của hàm số: y = 3cos2x + 2sinx.
Bài 4. Xét tính chẵn lẻ của hàm số: y = sin3x.
Bài 5. Xét tính chẵn lẻ của các hàm số sau:
a) y = 5sin2x + 2tan x;
b) y = cos3x + ;
c) y = sin5x.cos2x;
d) y = sin22x.
Xem thêm các dạng bài tập Toán lớp 11 có trong đề thi THPT Quốc gia khác:
- Dạng 1: Tập xác định, tập giá trị của hàm số lượng giác
- Trắc nghiệm tập xác định, tập giá trị của hàm số lượng giác
- Trắc nghiệm tính chẵn, lẻ và chu kì của hàm số lượng giác
- 60 bài tập trắc nghiệm hàm số lượng giác có đáp án (phần 1)
- 60 bài tập trắc nghiệm hàm số lượng giác có đáp án (phần 2)
Tủ sách VIETJACK shopee lớp 10-11 cho học sinh và giáo viên (cả 3 bộ sách):
Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.
Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.
- Giải Tiếng Anh 11 Global Success
- Giải sgk Tiếng Anh 11 Smart World
- Giải sgk Tiếng Anh 11 Friends Global
- Lớp 11 - Kết nối tri thức
- Soạn văn 11 (hay nhất) - KNTT
- Soạn văn 11 (ngắn nhất) - KNTT
- Giải sgk Toán 11 - KNTT
- Giải sgk Vật Lí 11 - KNTT
- Giải sgk Hóa học 11 - KNTT
- Giải sgk Sinh học 11 - KNTT
- Giải sgk Lịch Sử 11 - KNTT
- Giải sgk Địa Lí 11 - KNTT
- Giải sgk Giáo dục KTPL 11 - KNTT
- Giải sgk Tin học 11 - KNTT
- Giải sgk Công nghệ 11 - KNTT
- Giải sgk Hoạt động trải nghiệm 11 - KNTT
- Giải sgk Giáo dục quốc phòng 11 - KNTT
- Giải sgk Âm nhạc 11 - KNTT
- Lớp 11 - Chân trời sáng tạo
- Soạn văn 11 (hay nhất) - CTST
- Soạn văn 11 (ngắn nhất) - CTST
- Giải sgk Toán 11 - CTST
- Giải sgk Vật Lí 11 - CTST
- Giải sgk Hóa học 11 - CTST
- Giải sgk Sinh học 11 - CTST
- Giải sgk Lịch Sử 11 - CTST
- Giải sgk Địa Lí 11 - CTST
- Giải sgk Giáo dục KTPL 11 - CTST
- Giải sgk Hoạt động trải nghiệm 11 - CTST
- Giải sgk Âm nhạc 11 - CTST
- Lớp 11 - Cánh diều
- Soạn văn 11 Cánh diều (hay nhất)
- Soạn văn 11 Cánh diều (ngắn nhất)
- Giải sgk Toán 11 - Cánh diều
- Giải sgk Vật Lí 11 - Cánh diều
- Giải sgk Hóa học 11 - Cánh diều
- Giải sgk Sinh học 11 - Cánh diều
- Giải sgk Lịch Sử 11 - Cánh diều
- Giải sgk Địa Lí 11 - Cánh diều
- Giải sgk Giáo dục KTPL 11 - Cánh diều
- Giải sgk Tin học 11 - Cánh diều
- Giải sgk Công nghệ 11 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 11 - Cánh diều
- Giải sgk Giáo dục quốc phòng 11 - Cánh diều
- Giải sgk Âm nhạc 11 - Cánh diều