(4 dạng) Bài tập Viết phương trình mặt cầu ôn thi Tốt nghiệp (có lời giải)

Bài viết Viết phương trình mặt cầu ôn thi Tốt nghiệp môn Toán với phương pháp giải chi tiết giúp học sinh ôn tập, biết cách làm bài tập Viết phương trình mặt cầu.

(4 dạng) Bài tập Viết phương trình mặt cầu ôn thi Tốt nghiệp (có lời giải)

Bài giảng: Cách viết phương trình mặt cầu - dạng bài cơ bản - Cô Nguyễn Phương Anh (Giáo viên VietJack)

Dạng 1: Xác định tâm và bán kính mặt cầu – Điều kiện để một phương trình là phương trình một mặt cầu.

1. Phương pháp giải

Quảng cáo

● Xét phương trình (S): (x- a)2 + ( y- b)2 + ( z- c)2 = R2.

Khi đó mặt cầu có tâm I (a; b;c), bán kính R

● Xét phương trình (S): x2 + y2 + z2 – 2ax – 2by – 2cz + d = 0.

Điểu kiện để phương trình trên là phương trình mặt cầu là: a2 + b2 + c2 – d > 0

Khi đó mặt cầu có (4 dạng) Bài tập Viết phương trình mặt cầu ôn thi Tốt nghiệp (có lời giải)

2. Ví dụ minh họa

Ví dụ 1: Mặt cầu (S): 3x2 + 3y2 + 3z2 - 6x + 12y + 2 = 0 có bán kính bằng:

(4 dạng) Bài tập Viết phương trình mặt cầu ôn thi Tốt nghiệp (có lời giải)

Hướng dẫn giải:

Ta có (S): 3x2 + 3y2 + 3z2 – 6x +12y +2 = 0

⇔ x2 + y2 + z2 - 2x + 4y + 2/3 = 0

Đây là phương trình đường tròn có tâm I( 1; -2; 0), bán kính (4 dạng) Bài tập Viết phương trình mặt cầu ôn thi Tốt nghiệp (có lời giải) .

Chọn D.

Ví dụ 2: Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) có phương trình: x2 + y2 +z2 + 2x - 4y + 6z – 2= 0 . Tính tọa độ tâm I và bán kính R của (S).

A.Tâm I( -1; 2; -3) và bán kính R=4.    B. Tâm I( 1; -2; 3) và bán kính R = 4.

C.Tâm I(-1; 2; 3) và bán kính R= 4.    D. Tâm I(1; -2; 3) và bán kính R= 16.

Hướng dẫn giải:

Phương trình mặt cầu (S): x2 + y2 + z2 + 2x - 4y + 6z – 2 = 0 có:

(4 dạng) Bài tập Viết phương trình mặt cầu ôn thi Tốt nghiệp (có lời giải)

Chọn A.

Quảng cáo

Ví dụ 3: Cho phương trình (S): x2 + y2 + z2 + 2( 3 – m)x – 2( m+ 1)y – 2mz + 2m2 + 7 = 0 . Tìm tất cả giá trị của m để ( S) là một phương trình mặt cầu.

(4 dạng) Bài tập Viết phương trình mặt cầu ôn thi Tốt nghiệp (có lời giải)

Hướng dẫn giải:

Ta có: a= m - 3 ; b = m + 1; c = m và d= 2m2 + 7

Điều kiện để ( S) là mặt cầu là a2 + b2 + c2 - d > 0

⇔ ( m- 3)2 + ( m+1)2 + m2 – 2m2 - 7 > 0 hay m2 – 4m + 3 > 0

(4 dạng) Bài tập Viết phương trình mặt cầu ôn thi Tốt nghiệp (có lời giải)

Chọn C.

Ví dụ 4: Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) có phương trình: x2 + y2 + z2 – (2m - 2) x + 3my + ( 6m – 2)z – 7= 0 . Gọi R là bán kính của (S) , giá trị nhỏ nhất của R bằng:

A. 7    B. √377/7    C. √377    D. √377/4

Hướng dẫn giải:

Ta có (S): x2 + y2 + z2 - ( 2m – 2)x + 3my + ( 6m -2) z – 7 = 0

hay (4 dạng) Bài tập Viết phương trình mặt cầu ôn thi Tốt nghiệp (có lời giải)

Suy ra bán kính

(4 dạng) Bài tập Viết phương trình mặt cầu ôn thi Tốt nghiệp (có lời giải)

Dạng 2: Lập phương trình mặt cầu biết tâm và bán kính .

1. Phương pháp giải

+ Mặt cầu có đường kính AB: Tâm I là trung điểm của AB và bán kính R = AB/2 .

Lập phương trình mặt cầu đi qua bốn điểm A, B, C, D không đồng phẳng

Cách 1:

+ Bước 1: Gọi phương trình mặt cầu là x2 + y2 + z2 – 2ax – 2by - 2cz + d = 0 ( *)

(với a2 + b2 + c2 – d > 0 )

+ Bước 2: Thay tọa độ bốn điểm A, B, C, D vào phương trình (*), ta được hệ 4 phương trình.

+ Bước 3: Giải hệ trên tìm được a, b, c, d( chú ý đối chiếu điều kiện a2 + b2 + c2 – d > 0 ).

Thay a, b, c, d vào (*) ta được phương trình mặt cầu cần lập.

Cách 2:

+ Bước 1: Gọi I(a, b, c) là tâm mặt cầu đi qua bốn điểm A, B, C, D

Suy ra: (4 dạng) Bài tập Viết phương trình mặt cầu ôn thi Tốt nghiệp (có lời giải)

+ Bước 2: Giải hệ trên để tìm a, b, c.

+ Bước 3: Tìm bán kính R = IA.

Từ đó, viết phương trình mặt cầu cần tìm có dạng (x- a)2 + ( y – b)2 + ( z - c)2 = R2

Quảng cáo

2. Ví dụ minh họa

Ví dụ 1: Cho hai điểm A( -2; 1; 0) và B( 2;3 ; -2). Phương trình mặt cầu đường kính AB là:

A. (x + 2)2 + ( y -1)2 + ( z+ 1)2 = 8    B. x2 +( y +2)2 + ( z- 1)2 = 10

C. x2 + ( y - 2)2 + ( z+ 1)2 = 6    D. (x – 2)2 + (y +1)2 + (z -1)2 = 8

Hướng dẫn giải:

Gọi M là trung điểm của AB, tọa độ điểm M là :

(4 dạng) Bài tập Viết phương trình mặt cầu ôn thi Tốt nghiệp (có lời giải)

Độ dài MA là : (4 dạng) Bài tập Viết phương trình mặt cầu ôn thi Tốt nghiệp (có lời giải)

Mặt cầu cần tìm nhận M(0; 2; -1) làm tâm và có bán kính là R= MA = √6.

Ta có phương trình mặt cầu là : (x - 0)2 + ( y - 2)2 + ( z+ 1)2 = 6

Hay x2 + ( y -2)2 + (z +1)2 = 6

Chọn C.

Ví dụ 2: Nếu mặt cầu (S) đi qua bốn điểm M(2; 2;2); N( 4; 0; 2); P( 4; 2; 0) và Q(4;2;2) thì tâm I của (S) có toạ độ là:

A. (-1;-1; 0)    B. (3; 1; 1)    C. (1; 1; 1)    D. (1; 2;1)

Hướng dẫn giải:

Gọi phương trình mặt cầu (S): x2 + y2 + z2 - 2ax – 2by – 2cz + d= 0 ( a2 + b2 + c2 - d > 0) .

Do M(2;2;2) ∈ (S) 22 + 22 + 22 – 2.2a- 2.2b – 2.2c + d = 0 hay – 4a – 4b – 4c + d= -12 (1)

Do N( 4; 0; 2) ∈ (S) nên 42 + 02 + 22 - 2.4a- 2.0b - 2.2c + d = 0 hay – 8a – 4c + d= - 20 (2)

Do P(4; 2; 0) ∈ (S) nên 42 + 22 + 02 – 2.4a - 2.2b - 2.0.c + d = 0 hay – 8a – 4b + d = -20 (3)

Do Q(4; 2; 2) ∈ (S) nên 42 + 22 + 22 - 2.4 a -2.2b – 2.2c + d = 0 hay – 8a – 4b – 4c + d = -24 (4)

Từ (1); (2); (3) và (4) ta có hệ phương trình:

(4 dạng) Bài tập Viết phương trình mặt cầu ôn thi Tốt nghiệp (có lời giải)

Suy ra, mặt cầu (S) thỏa mãn có tâm I(1; 2; 1)

Chọn A.

Quảng cáo

Ví dụ 3: Mặt cầu (S) tâm I( -1; 2; -3) và tiếp xúc với mặt phẳng (P): x+ 2y + 2z + 6 = 0có phương trình:

A. (x- 1)2 +( y+2)2 + (z- 3)2 = 2    B. (x+ 1)2 + ( y – 2)2 + (z + 3)2 = 4

C. (x+ 1)2 + (y -2)2 + (z + 3)2 =1    D. (x+1)2 + ( y - 2)2 +(z + 3)2 = 25

Hướng dẫn giải:

Khoảng cách từ tâm I đến mặt phẳng (P) là:

(4 dạng) Bài tập Viết phương trình mặt cầu ôn thi Tốt nghiệp (có lời giải)

Do mặt cầu (S) tiếp xúc với mặt phẳng (P) nên d( I; (P)) = R = 1

Suy ra, phương trình mặt cầu cần tìm là:

(x+1)2 + (y - 2)2 + (z + 3)2 = 1

Chọn C.

Ví dụ 4: Cho các điểm A(-2; 4; 1); B(2; 0; 3) và đường thẳng (4 dạng) Bài tập Viết phương trình mặt cầu ôn thi Tốt nghiệp (có lời giải) . Gọi (S) là mặt cầu đi qua A; B và có tâm thuộc đường thẳng d. Bán kính mặt cầu (S) bằng:

A. 3√3    B. √6    C.3.    D.2√3

Hướng dẫn giải:

Tâm I ∈d => I(1+t;1+2t;-2+t) .

=> AI(3+t;-3+2t;-3+t); BI(-1+t;1+2t;-5+t)

Vì (S) đi qua A và B nên ta có IA = IB => IA2 = IB2

⇔ (3+ t)2 + (-3+ 2t)2 + ( -3+ t)2 = ( -1+ t)2 + (1+ 2t)2 + (- 5+ t)2

⇔ 9+ 6t + t2 + 9 – 12t + 4t2 + 9 – 6t + t2 = 1- 2t+ t2 + 1+ 4t + 4t2 + 25 - 10t + t2

⇔ 6t2 - 12t + 27 = 6t2 – 8t + 27

⇔ -4t = 0 nên t = 0

=> AI(3 ; -3 ; -3) nên AI = 3√3

Vậy bán kính mặt cầu (S) là R = AI = 3√3

Chọn A.

Ví dụ 5: Cho đường thẳng (4 dạng) Bài tập Viết phương trình mặt cầu ôn thi Tốt nghiệp (có lời giải) và hai mặt phẳng (P): x+ 2y + 2z+3 = 0, (Q): x+ 2y + 2z + 7 = 0. Mặt cầu (S) có tâm I thuộc đường thẳng d và tiếp xúc với hai mặt phẳng (P) và (Q) có phương trình

A. (x+ 3)2 + (y+1)2 + (z - 3)2 = 4/9 .    B. (x- 3)2 +(y - 1)2 + (z+ 3)2 = 4/9 .

C. (x+3)2 +(y+ 1)2 +(z+3)2 = 4/9 .     D. (x-3)2 +( y+1)2 + (z+ 3)2 = 4/9 .

Hướng dẫn giải:

Do tâm I ∈ d nên I(t; -1; - t)

Mà mặt cầu (S) tiếp xúc với hai mặt phẳng (P) và (Q) nên ta có:

R= d(I; (P)) = d(I; (Q))

(4 dạng) Bài tập Viết phương trình mặt cầu ôn thi Tốt nghiệp (có lời giải)

⇔ | -t+ 1| = | -t + 5|

⇔ t2 – 2t +1= t2 – 10t + 25

⇔8t = 24 nên t = 3.

Với t= 3,ta có tâm I (3; -1; -3) và bán kính R= d( I; (P))= (4 dạng) Bài tập Viết phương trình mặt cầu ôn thi Tốt nghiệp (có lời giải)

Phương trình mặt cầu là (x-3)2 + ( y+1)2 + (z+ 3)2 = 4/9

Chọn D.

Dạng 3. Viết phương trình mặt cầu biết tâm I, một đường thẳng ( mặt phẳng) cắt mặt cầu thỏa mãn điều kiện T.

1. Phương pháp giải

* Phương trình mặt cầu (S) biết tâm I và cắt đường thẳng d theo dây cung AB

(4 dạng) Bài tập Viết phương trình mặt cầu ôn thi Tốt nghiệp (có lời giải)

• Bước 1: Tính khoảng cách từ tâm I đến đường thẳng d

• Bước 2: Dựa vào giả thuyết đề cho, ta tính độ dài dây cung AB. Suy ra độ dài AH (với H là trung điểm AB)

• Bước 3: Tính IA theo định lý Pitago cho tam giác vuông AIH. Suy ra bán kính R= IA.

* Phương trình mặt cầu (S) biết tâm I và cắt mặt phẳng (P) theo đường tròn giao tuyến (C)

(4 dạng) Bài tập Viết phương trình mặt cầu ôn thi Tốt nghiệp (có lời giải)

• Bước 1: Tính khoảng cách từ tâm I đến mặt phẳng (P)

• Bước 2: Dựa vào giả thuyết đề cho, ta tính bán kính r của đường tròn giao tuyến. Suy ra bán kính mặt cầu (4 dạng) Bài tập Viết phương trình mặt cầu ôn thi Tốt nghiệp (có lời giải)

2. Ví dụ minh họa

Ví dụ 1: Phương trình mặt cầu (S) có tâm I(2; 3; -1) và cắt đường thẳng (4 dạng) Bài tập Viết phương trình mặt cầu ôn thi Tốt nghiệp (có lời giải) tại hai điểm A, B với AB = 16.

A.( x- 2)2 + ( y- 3)2 +(z + 1)2 = 76 .    B. (x-2)2 + (y - 3)2 + (z+ 1)2 = 46 .

C. (x- 2)2 +( y - 3)2 + (z+ 1)2 = 56.    D. ( x- 2)2 +( y – 3)2 + (z+1)2 = 66

Hướng dẫn giải:

Chọn M(-1; 1; 0) ∈ Δ => IM(-3; -2; 1) . Đường thẳng Δ có một VTCP là u(1; -4; 1).

Ta có: [IM; u] = (2; 4; 14)

Từ đó, khoảng cách từ I đến Δ là :

(4 dạng) Bài tập Viết phương trình mặt cầu ôn thi Tốt nghiệp (có lời giải)

Gọi H là trung điểm của AB ta có: AH= HB= AB/2 = 8

Gọi R là bán kính mặt cầu (S). Khi đó (4 dạng) Bài tập Viết phương trình mặt cầu ôn thi Tốt nghiệp (có lời giải)

Do đó, phương trình mặt cầu là: ( x- 2)2 +( y – 3)2 + (z+ 1)2 = 76

(S): ( x- 2)2 +( y – 3)2 + (z+ 1)2 = 76 .

Chọn A.

Ví dụ 2: Cho hai mặt phẳng (P): 5x – 4y + z - 6 = 0; (Q): 2x - y+ z +7 = 0 và đường thẳng (4 dạng) Bài tập Viết phương trình mặt cầu ôn thi Tốt nghiệp (có lời giải) . Viết phương trình mặt cầu (S) có tâm I là giao điểm của (P) và Δ sao cho (Q) cắt (S) theo một hình tròn có diện tích là 20π .

A.( x-1)2 + y2 +( z+1)2 = 110/3 .    B. (x- 1)2 + y2 + (z -1)2 = 110/3

C.(x- 1)2 + y2 +( z- 1)2 = 110/3 .    D. (x- 1)2 + y2 + (z - 1)2 = 110.

Hướng dẫn giải:

Phương trình tham số của đường thẳng ∆: (4 dạng) Bài tập Viết phương trình mặt cầu ôn thi Tốt nghiệp (có lời giải)

Do tâm I là giao điểm của đường thẳng ∆ và (P) nên tọa độ I là nghiệm của hệ phương trình:

(4 dạng) Bài tập Viết phương trình mặt cầu ôn thi Tốt nghiệp (có lời giải)

Thay (1), (2), (3) vào (4) ta có: 5(1+7t) – 4. 3t + (1 – 2t) – 6 =0

⇔ 21t = 0 ⇔ t= 0

Khi đó, tọa độ điểm I(1 ; 0 ; 1).

Khoảng cách từ điểm I đến mặt phẳng (Q) là :

(4 dạng) Bài tập Viết phương trình mặt cầu ôn thi Tốt nghiệp (có lời giải)

Gọi r là bán kính đường tròn giao tuyến của (S) và mặt phẳng (Q). Ta có:

20π = πr2 ⇔ r = 2√5

Gọi R là bán kính mặt cầu (S) cần tìm.

Theo giả thiết: (4 dạng) Bài tập Viết phương trình mặt cầu ôn thi Tốt nghiệp (có lời giải)

Vậy phương trình mặt cầu ( S) cần tìm là: (x- 1)2 + y2+ (z-1)2 = 110/3

Chọn B.

Ví dụ 3: Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(0; -1; 0); B(1; 1; -1) và mặt cầu (S): x2 + y2 + z2 – 2x + 4y – 2z – 3 = 0. Mặt phẳng (P) đi qua A, B và cắt mặt cầu (S) theo giao tuyến là đường tròn có bán kính lớn nhất có phương trình là

A. x- 2y + 3z – 2 = 0.    B. x - 2y – 3z – 2= 0.

C. x+ 2y – 3z - 6 = 0    D. 2x- y – 2 = 0.

Hướng dẫn giải:

Để (P) cắt (S) theo giao tuyến là đường tròn có bán kính lớn nhất thì (P) phải qua tâm I(1; -2; 1)của (S).

Ta có AI(1; -1; 1); BI(0; -3; 2)

Một vecto pháp tuyến của mặt phẳng (P) là:

n = [AI; BI] = (1; -2; -3).

Mặt phẳng (P) đi qua A( 0; -1;0) và nhận vecto n(1; -2; -3) làm VTPT nên có phương trình:

1( x- 0) – 2( y+1) – 3( z- 0) = 0 hay x- 2y - 3z – 2= 0

Chọn B.

Ví dụ 4: Trong không gian Oxyz, cho điểm M(2; 1; 1), mặt phẳng ( α): x+ y + z – 4 = 0 và mặt cầu (S): x2 + y2 + z2 – 6x – 6y – 8z+ 18 = 0. Phương trình đường thẳng Δ đi qua M và nằm trong (α) cắt mặt cầu (S) theo một đoạn thẳng có độ dài nhỏ nhất là:

(4 dạng) Bài tập Viết phương trình mặt cầu ôn thi Tốt nghiệp (có lời giải)

Hướng dẫn giải:

(4 dạng) Bài tập Viết phương trình mặt cầu ôn thi Tốt nghiệp (có lời giải)

Mặt cầu (S) có tâm I(3; 3;4) và bán kính R= 4.

Khoảng cách từ tâm I đến mặt phẳng (α) là: (4 dạng) Bài tập Viết phương trình mặt cầu ôn thi Tốt nghiệp (có lời giải)

Suy ra mặt cầu (S) cắt mặt phẳng (α) theo một đường tròn.

Ta có điểm M ∈ (α) < ; IM = √14 < R nên điểm M nằm trong mặt cầu (S).

Gọi H là hình chiếu vuông góc của I lên (P) => H(1; 1;2)

Để đường thẳng Δ đi qua M và nằm trong (α) cắt mặt cầu (S) theo một đoạn thẳng có độ dài nhỏ nhất thì Δ ⊥MH .

Từ đó suy ra Δ có véctơ chỉ phương là: u = [nα; MH] = (1; -2; 1)

Vậy phương trình (4 dạng) Bài tập Viết phương trình mặt cầu ôn thi Tốt nghiệp (có lời giải)

Chọn B.

Dạng 4: Lập phương trình mặt cầu tiếp xúc với đường thẳng, mặt phẳng và thỏa mãn điều kiện T

1. Ví dụ minh họa

Ví dụ 1: Cho điểm A(2; 5; 1) và mặt phẳng (P): 6x + 3y – 2z + 24= 0, H là hình chiếu vuông góc của A trên mặt phẳng (P). Phương trình mặt cầu (S) có diện tích và tiếp xúc với mặt phẳng (P) tại H, sao cho điểm A nằm trong mặt cầu là:

A. (x- 8)2 + ( y- 8)2 + (z+ 1)2 = 196    B. (x + 82 +(y+ 8)2 + (z - 1)2 = 196

C. (x + 16)2 + ( y+4)2 + (z- 7)2 = 196    D.(x- 16)2+ ( y- 4)2 +(z+ 7)2 = 196

Hướng dẫn giải:

Gọi d là đường thẳng đi qua A và vuông góc với (P). Suy ra, một VTCP của d là:

ud = nP( 6; 3; -2)

Phương trình đường thẳng d là (4 dạng) Bài tập Viết phương trình mặt cầu ôn thi Tốt nghiệp (có lời giải)

Vì H là hình chiếu vuông góc của A trên (P) nên H= d ∩ (P) .

Vì H ∈ d nên H( 2+ 6t; 5+ 3t; 1- 2t.

Mặt khác, H ∈ (P) nên ta có:

6(2+ 6t) + 3(5+ 3t) – 2( 1- 2t) + 24 = 0

⇔ t= - 1

Do đó, H( -4; 2; 3).

Gọi I và R lần lượt là tâm và bán kính mặt cầu.

Theo giả thiết diện tích mặt cầu bằng 784π , suy ra 4πR2 ⇔ R = 14 .

Vì mặt cầu tiếp xúc với mặt phẳng (P) tại H nên IH⊥ (P) => I ∈ d .

Do đó tọa độ điểm I có dạng I( 2+ 6t; 5+ 3t; 1- 2t), với t ≠ -1 .

Theo giả thiết, tọa độ điểm I thỏa mãn:

(4 dạng) Bài tập Viết phương trình mặt cầu ôn thi Tốt nghiệp (có lời giải)

Do đó: I(8; 8; -1).

Vậy phương trình mặt cầu (S): (x- 8)2 +( y – 8)2 + (z+1)2 = 196.

Chọn A.

Ví dụ 2: Cho mặt phẳng (P): x+ 2y – 2z + 2= 0 và điểm A(2; -3; 0). Gọi B là điểm thuộc tia Oy sao cho mặt cầu tâm B, tiếp xúc với mặt phẳng (P) có bán kính bằng 2. Tọa độ điểm B là:

A. (0; 1; 0)    B.(0; -4; 0)    C.(0; 2; 0) hoặc (0; -4; 0)    D. (0; 2; 0)

Hướng dẫn giải:

Vì B thuộc tia Oy nên B(0; b; 0) (với b > 0)

Bán kính của mặt cầu tâm B, tiếp xúc với (P) là R= d(B; (P))= |2b+2|/3 .

Theo giả thiết R= 2 nên:

(4 dạng) Bài tập Viết phương trình mặt cầu ôn thi Tốt nghiệp (có lời giải)

Do b > 0 nên chọn b= 2.

Vậy tọa độ B(0; 2; 0).

Chọn D.

Ví dụ 3: Cho hai mặt phẳng (P): 2x+ 3y – z + 2 = 0; (Q): 2x - y – z +2 = 0. Phương trình mặt cầu (S) tiếp xúc với mặt phẳng (P) tại điểm A(1; -1;1) và có tâm thuộc mặt phẳng (Q) là:

A. (x+ 3)2 + (y+ 7)2 + (z – 3)2 = 56    B. (x-3)2 + ( y- 7)2 + (z+ 3)2 = 56

C. ( x+3)2 + ( y+ 7)2 +( z - 3)2 = 14    D. (x- 3)2 +( y- 7)2+ ( z+ 3)2 = 14

Hướng dẫn giải:

Gọi d đường thẳng đi qua A và vuông góc với (P). Nên 1 VTCP của d là: ud = nP(2; 3; -1).

Ta có; phương trình đường thẳng d là: (4 dạng) Bài tập Viết phương trình mặt cầu ôn thi Tốt nghiệp (có lời giải)

Tâm I ∈ d nên I( 1+ 2t; -1+ 3t; 1- t).

Do điểm I nằm trên mp (Q) nên ta có:

2( 1+ 2t) - ( -1+ 3t ) – (1 – t) + 2 = 0

⇔t = - 2 nên I ( -3; -7; 3)

Bán kính mặt cầu là R= IA = (4 dạng) Bài tập Viết phương trình mặt cầu ôn thi Tốt nghiệp (có lời giải)

Phương trình mặt cầu (S): ( x+3)2 +(y+ 7)2 + (z- 3)2 = 56

Chọn A.

Ví dụ 4: Cho hai mặt phẳng (P);(Q) có phương trình (P): x- 2y + z - 1= 0 và (Q): 2x + y – z + 3 = 0 . Mặt cầu có tâm nằm trên mặt phẳng (P) và tiếp xúc với mặt phẳng (Q) tại điểm M, biết rằng M thuộc mặt phẳng (Oxy) và có hoành độ xM = 1 có phương trình là:

A.(x - 21)2 + ( y - 5)2 + ( z + 10)2 = 600    B. (x+19)2 + ( y+ 15)2 + (z - 10)2 = 600

C. (x- 21)2 + (y - 5)2 + (z + 10)2 = 100    D. (x+ 21)2 + ( y+ 5)2 + (z - 10)2 = 600

Hướng dẫn giải:

Vì M ∈ (Oxy) và có hoành độ bằng 1 nên M(1; y ; 0).

Lại có, mặt cầu tiếp xúc với mặt phẳng (Q) nên M ∈ Q

=> 2.1 + y - 0+ 3 = 0 => y = -5

Tọa độ điểm M(1; -5; 0).

Gọi I(a; b; c) là tâm của mặt cầu (S) cần tìm.

Ta có (S) tiếp xúc với mp (Q) tại M nên IM⊥(Q) .

Mặt phẳng (Q) có vectơ pháp tuyến n(2; 1; -1).

Ta có: IM⊥(Q)

(4 dạng) Bài tập Viết phương trình mặt cầu ôn thi Tốt nghiệp (có lời giải)

Do I ∈ (P) nên 1+ 2t – 2( - 5+ t) - t – 1 = 0

⇔ t = 10 nên I(21; 5; -10)

Bán kính mặt cầu R= d(I; (Q)) = 10√6

Vậy phương trình mặt cầu (S): ( x- 21)2 + ( y- 5)2 + ( z +10)2 = 600.

Chọn A.

Ví dụ 5: Cho hai điểm M(1;0;4); N(1; 1; 2) và mặt cầu (S): x2 + y2 + z2 – 2x + 2y – 2= 0 . Mặt phẳng (P) qua M; N và tiếp xúc với mặt cầu (S) có phương trình:

A. 4x + 2y + z - 8 = 0 hoặc 4x – 2y – z + 8= 0

B. 2x + 2y +z – 6= 0 hoặc 2x – 2y – z + 2= 0

C. 2 x+ 2y + z – 6 = 0

D. 2x – 2y – z + 2 = 0

Hướng dẫn giải:

- Ta có mặt cầu (S) có tâm I(1; -1; 0) và bán kính R= 2; MN(0; 1; -2)

- Gọi n(A;B;C) với A2 + B2 + C2 > 0 là một vectơ pháp tuyến của mặt phẳng (P).

- Vì (P) qua M, N nên nMN => n.MN = 0

⇔ B - 2C = 0 (1)

- Mặt phẳng (P) qua M(1; 0; 4) và nhận ( A, B, C) là vectơ pháp tuyến nên có phương trình

A(x-1)+ B( y – 0) + C( z- 4) = 0 hay Ax + By +Cz – A - 4C =0.

- Mặt phẳng (P) tiếp xúc với (S) nên d(I ; (P)) = R

(4 dạng) Bài tập Viết phương trình mặt cầu ôn thi Tốt nghiệp (có lời giải)

Từ (1) và (2) => A2 - 4C2 = 0 (*)

- Trong (*), nếu C = 0 thì A= 0, và từ (1) suy ra B = 0 (vô lí). Do vậy, C ≠ 0

Chọn C=1 => A = ±2

Với A=2 ; C = 1, ta có B = 2 . Khi đó; (P); 2x + 2y + z - 6 = 0 .

Với A= -2; C= 1, ta có B= 2. Khi đó, (P): 2x – 2y – z + 2 = 0 .

- Vậy phương trình mặt phẳng (P):2x + 2y + z – 6= 0 hoặc (P): 2x – 2y – z + 2 = 0 .

Chọn B.

Bài tập tự luyện

Bài 1. Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 4; 3). Viết phương trình mặt cầu (S) có tâm A và cắt trục Ox tại B, C sao cho BC = 6?

Bài 2. Viết phương trình mặt cầu (S) có tâm O(1; 2; 0) và (S) đi qua điểm P(2; -2; 1).

Bài 3. Cho hai điểm A( -2; 1; 0) và B( 2;3 ; -2). Viết phương trình mặt cầu đường kính AB.

Bài 4. Viết phương trình mặt cầu (S) có tâm I(2; 3; -1) và cắt đường thẳng d: x+11=y14=z1 tại 2 điểm A, B với AB = 16.

Bài 5. Cho điểm A(2; 5; 1) và mặt phẳng (P): 6x + 3y – 2z + 24= 0, H là hình chiếu vuông góc của A trên mặt phẳng (P). Viết phương trình mặt cầu (S) có diện tích và tiếp xúc với mặt phẳng (P) tại H, sao cho điểm A nằm trong mặt cầu.

Bài giảng: Cách viết phương trình mặt cầu - dạng bài nâng cao - Cô Nguyễn Phương Anh (Giáo viên VietJack)

Xem thêm các dạng bài tập Toán lớp 12 ôn thi Tốt nghiệp có lời giải hay khác:

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.

phuong-phap-toa-do-trong-khong-gian.jsp

Giải bài tập lớp 12 sách mới các môn học