Cách nhận dạng đồ thị hàm số bậc 4 trùng phương - Lý thuyết và Bài tập đầy đủ các dạng có đáp án



Chuyên đề: Nhận dạng đồ thị hàm số

Cách nhận dạng đồ thị hàm số bậc 4 trùng phương

Phương pháp giải

Các dạng đồ thị của hàm số bậc 4 trùng phương y = ax4 + bx2 + c     (a ≠ 0)

   Đồ thị có 3 điểm cực trị :

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

   Đồ thị có 1 điểm cực trị :

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

   Đồ thị hàm bậc bốn trùng phương luôn nhận trục tung làm trục đối xứng

Ví dụ minh họa

Ví dụ 1: Đường cong trong hình bên là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D dưới đây. Hỏi hàm số đó là hàm số nào ?

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

   A. y = x4 - 3x2+1.     B. y = x4 + 2x2.

   C. y = x4 - 2x2.     D. y = -x4 - 2x2.

Hướng dẫn

Từ đồ thị và đáp án suy ra đây là hàm số bậc 4 trùng phương: y = ax4 + bx2 + c     (a ≠ 0) có 3 cực trị nên a > 0,b < 0. Do đó loại B, D. Do đồ thị qua O(0; 0)nên c = 0 loại A.

Từ đồ thị suy ra hàm số đạt cực đại tại x = 0 và đạt cực tiểu tại x = ±1 nên loại A, B, D.

Chọn C.

Ví dụ 2: Giả sử hàm số y = ax4 + bx2 + c có đồ thị là hình bên dưới. Tìm a,b, c.

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Hướng dẫn

y' = 4ax3 + 2bx

Nhìn đồ thị ta thấy :

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Ví dụ 3: Cho hàm số y=f(x) có đồ thị (C) như hình vẽ. Chọn khẳng định sai về hàm số f(x):

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

   A. Hàm số f(x) tiếp xúc với Ox.

   B. Hàm số f(x) đồng biến trên (-1; 0).

   C. Hàm số f(x) nghịch biến trên (-∞; -1).

   D. Đồ thị hàm số f(x) có tiệm cận ngang là y = 0.

Hướng dẫn

Từ đồ thị ta suy ra các tính chất của hàm số:

   1. Hàm số đạt CĐ tại x = 0 và đạt CT tại x = ±1.

   2. Hàm số tăng trên (-1; 0) và (1; +∞).

   3. Hàm số giảm trên (-∞; -1) và (0; 1).

   4. Hàm số không có tiệm cận.

Chọn D.

Chuyên đề Toán 12: đầy đủ lý thuyết và các dạng bài tập có đáp án khác:

Đã có app VietJack trên điện thoại, giải bài tập SGK, soạn văn, văn mẫu.... Tải App để chúng tôi phục vụ tốt hơn.

Tải App cho Android hoặc Tải App cho iPhone

Loạt bài Chuyên đề: Lý thuyết - Bài tập Toán lớp 12 Đại số, Giải tích và Hình học có đáp án có đầy đủ Lý thuyết và các dạng bài được biên soạn bám sát nội dung chương trình sgk Giải tích 12 và Hình học 12.

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


nhan-dang-do-thi-ham-so.jsp


Các loạt bài lớp 12 khác