Lớp 12: Bí kíp đạt ít nhất 24 điểm thi THPT Quốc Gia chỉ 399k, tại khoahoc.vietjack.com. Xem ngay Xem ngay!

Trắc nghiệm Điểm đặc biệt thuộc đồ thị hàm số - Toán lớp 12



Toán lớp 12: Điểm thuộc đồ thị

Trắc nghiệm Điểm đặc biệt thuộc đồ thị hàm số

Bài 1: Đồ thị của hàm số y = x2 + 2mx - m + 1 (m là tham số) luôn đi qua một điểm Mcố định có tọa độ là

A. M(0; 1).    B. M(1/2; 3/2).    C. M(1/2; 5/4).    D. M(-1; 0).

Đáp án : C

Giải thích :

Gọi M(xo;yo) là điểm cố định cần tìm.

Ta có yo = xo2 + 2mxo - m + 1

⇔ (2xo- 1)m + xo2 + 1 - yo = 0,∀m⇔ Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án ⇒ M(1/2; 5/4).

Bài 2: Biết đồ thị (Cm) của hàm số y = x4 - 2mx2 + 3 luôn đi qua một điểm M cố định khi m thay đổi, khi đó tọa độ của điểm M là

A. M(-1; 1).    B. M(1; 4).    C. M(0; -2).    D. M(0; 3).

Đáp án : D

Giải thích :

Gọi M(xo; yo) là điểm cố định cần tìm.

Ta có

yo=xo4 -2mxo2 + 3,∀m⇔ 2xo2 m + yo - 3 - xo4 = 0,∀m⇔ Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án ⇒ M(0;3).

Bài 3: Biết đồ thị (Cm) của hàm số y=[(m+1)x + m]/(x + m) (m ≠ 0) luôn đi qua một điểm M cố định khi m thay đổi. Tọa độ điểm M khi đó là

A. M(-1; -1/2).    B. M(0; 1).    C. M(-1; 1).    D. M(0; -1).

Đáp án : B

Giải thích :

Gọi M(xo;yo) là điểm cố định cần tìm.

Ta có yo=((m + 1)xo + m)/(xo+ m) ,∀m≠0⇔ xo yo+myo = mxo + xo + m ,∀m ≠ 0

⇔ m(yo - xo-1) + xo yo - xo = 0,∀m ≠ 0⇔ Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án ⇒ M(0; 1).

Bài 4: Trên đồ thị (C) của hàm số y = 3/(2x - 1) có bao nhiêu điểm có tọa độ là các số nguyên dương

A. 4.    B. 3.    C. 1.    D. 2.

Đáp án : D

Giải thích :

Gọi M(xo;yo) với xo ∈ N*,yo ∈ N*

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án ⇒ 2xo - 1 ∈ {1; 3} ⇒ xo ∈ {1; 2}

⇒ M1(-1; -1),M2(0; -3),M3(1; 3) và M4(2; 1).

   Vậy trên đồ thị (C) có hai điểm có tọa độ là các số nguyên dương

Bài 5: Trên đồ thị (C) của hàm số y = (x + 2)/(2x - 1) có bao nhiêu điểm có tọa độ nguyên

A. 4.    B. 2.    C. 1.    D. 6.

Đáp án : A

Giải thích :

Gọi M(xo; yo) với xo ∈ Z, yo ∈ Z.

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án ⇒ 2xo-1∈{-5;-1;1;5} ⇒ xo∈{-2;0;1;3}

⇔ xo=-2 ⇒ yo=0 ⇒ M(-2;0) ⇔ xo= 1 ⇒ yo=3 ⇒ M(1;3)

⇔ xo=0 ⇒ yo=-2 ⇒ M(0;-2) ⇔ xo= 3 ⇒ yo=1 ⇒ M(3;1)

   Vậy trên đồ thị (C) có bốn điểm có tọa độ là các số nguyên.

Bài 6: Cặp điểm thuộc đồ thị (C) của hàm số y = x3 - 4x2 + 9x + 4 đối xứng nhau qua gốc tọa độ O là?

A. (3; 22) và (-3; -22).    B. (2; 14) và (-2; -14).

C. (1; 10) và (-1; -10).    D. (0; 4) và (4; 40).

Đáp án : C

Giải thích :

Gọi A(xA;xA3 - 4xA2 + 9xA + 4), B(xB; xB3 - 4xB2 + 9xB + 4) là hai điểm trên (C) đối xứng nhau qua gốc tọa độ.

Ta có Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Thay (1) vào (2) ta được

xA3 -4xA2 + 9xA + 4 + (-xA )3 - 4(-xA )2 + 9(-xA) + 4 = 0⇔ Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án.

   Vậy cặp điểm cần tìm là A(1; 10), B(-1; -10).

Bài 7: Cặp điểm thuộc đồ thị (C) của hàm số y = x3 + x đối xứng nhau qua đường thẳng d: y = -1/2 x là:

A. (1; 2) và (-2; -10).    B. (2; -1) và (-2; 1).

C. (1; -2) và (-1; 2).    D. (1; 2) và (-1; -2).

Đáp án : D

Giải thích :

Gọi A(a;a3 +a),B(b;b3 +b) là hai điểm trên (C) đối xứng nhau qua đường thẳng d: y = -1/2 x hay d:x+2y=0.

Ta có:Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án (với I là trung điểm của AB và Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án (2;-1) là vecto chỉ phương của d)

Từ (1) ta có (a3 + a + b3 + b)/2 = -1/2.(a + b)/2

⇔ (a + b)(2a2 - 2ab + 2b2 + 3) = 0⇔ a = -b (3)

(vì 2a2 - 2ab + 2b2 + 3 = 2(a2 - ab + b2 + 3/2) = 2(a - 1/2 b)2 + 3/2 b2 +3>0,∀a,b)

Với (AB)=(b - a; (b - a)(a2 + ab + b2 +2)), từ (2) ta có

2(b - a) - (b - a)(a2 + ab + b2 + 1) = 0

⇔ (b - a)(a2 + ab + b2 - 1) = 0

⇒ a2 + ab + b2 - 1 = 0 (4) (Vì a≠ b)

Thay (3) vào (4) ta được a2 - a2 +a2 -1=0 ⇔ Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án.

   Vậy cặp điểm cần tìm là A(1; 2), B(-1; -2).

Bài 8: Cho điểm M thuộc đồ thị (C) của hàm số y = (x - 7)/(x + 1), biết M có hoàng độ a và khoảng cách từ Mđến trục Ox bằng ba lần khoảng cách từ Mđến trục Oy. Giá trị có thể có của a là

A. a = 1 hoặc a = 7/3.    B. a = -1 hoặc x = 7/3.

C. a = -1 hoặc a = -7/3.    D. a = 1 hoặc a = -7/3.

Đáp án : D

Giải thích :

Gọi M(a;(a - 7)/(a + 1)) với a ≠ -1. Theo đề ta có: |(a - 7)/(a + 1)| = 3|a|⇔ Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án.

Bài 9: Tập hợp tất cả các giá trị thực của m để trên đồ thị (Cm) của hàm số y = (x2 - 4mx + 5m)/(x - 2) có hai điểm phân biệt đối xứng nhau qua gốc tọa độ là

A. (0; +∞).    B. (-1/2; 0)\{-4/13}.

C. [1; +∞).    D. (-∞; 0)∪(1/2; 4/3)∪(4/3; +∞).

Đáp án : D

Giải thích :

Đồ thị hàm số (Cam) có hai điểm phân biệt đối xứng nhau qua gốc tọa độ khi và chỉ khi tồn tại xo ≠ 2 và xo ≠ 0 sao cho y(xo) = -y(-xo)

⇔ tồn tại xo ≠ 2 và xo ≠ 0 sao cho (xo2 - 4mxo + 5m)/(xo - 2) = -((-xo )2 - 4m(-xo) + 5m)/((-xo) - 2)

⇔ tồn tại xo ≠ 2 và xo ≠ 0 sao cho (1 - 2m)xo2 + 5m = 0

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án.

Bài 10: Khoảng cách ngắn nhất từ điểm M thuộc đồ thị (C) của hàm số y = (x2 + 2x - 2)/(x - 1) đến I(1, 4) là

A. 2.    B. 2√2.    C. √(2 + 2√2) .    D. √(2√2 - 2).

Đáp án : C

Giải thích :

Gọi M(x; y) thuộc (C), ta có

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án.

Mà g(x) = (x - 1)2 + (x - 1)2 + 1/(x - 1)2 + 2 = 2(x - 1)2 + 1/(x - 1)2 + 2 ≥ 2 + 2√2.

⇒ minIM = √(2 + 2√2) . Đạt được khi 2(x-1)2 = 1/(x - 1)2 ⇔ (x - 1)4 = 1/2 ⇒ Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án.

Bài 11: Cho hàm số y =(x + 2)/(x - 3) có đồ thị (C). Tổng khoảng cách từ một điểm M thuộc (C) đến hai hai trục tọa độ đạt giá trị nhỏ nhất bằng ?

A. 2.    B. 2/3.    C. 1.    D. 1/6.

Đáp án : B

Giải thích :

Điểm M nằm trên trục Ox : M(-2; 0) ⇒ dM = |-2| + 0 = 2

Điểm M nằm trên trục tung : dM = 0 + |-2/3| = 2/3 < 2

Xét những điểm M có hoành độ |x|>2/3 ⇒ dM = |x| + |y| > 2/3.

Xét những điểm M có hoành độ thỏa mãn |x| < 2/3; y < -2/3 ⇒ |y| > 2/3(*)

    Trường hợp : 0 ≤ x ≤ 2/3. Do (*) cho nên : dM = |x| + |y| > 2/3

    Trường hợp : -2/3 < x < 0;-2/3 < y < 0 ⇒ dM = -x - 1 - 5/(x - 3); d'M = -1 + 5/(x - 3)2

d'M=0⇔ Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án. Khi lập bảng biến thiên ,ta thấy hàm số nghịch biến với mọi x∈(-2/3;0). Vậy mindM=dM (0)=2/3.

Bài 12: Tọa độ điểm M có hoành độ nguyên thuộc đồ thị (C) của hàm số y = (x + 2)/(x - 1) có khoảng cách đến đường thẳng Δ: x - y + 1 = 0 bằng 1/√2 là

A. M(-2; 0).     B. M(2; 4).

C. M(2; 4);M(-2; 0).    D. M(2; -2).

Đáp án : C

Giải thích :

Gọi M(a;(a + 2)/(a - 1)) ∈ (C) với a ≠ 1 ta có

|a - (a + 2)/(a - 1) + 1|/√2 = 1/√2⇔ |a2 - a - 3|/|a - 1| = 1⇔ Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án.

Vậy có hai điểm thỏa yêu cầu là M(2; 4);M(-2; 0).

Bài 13: Cho hàm số y=(x2 + 3x + 3)/(x + 2) có đồ thị (C). Tổng khoảng cách từ một điểm M thuộc (C) đến hai hai trục tọa độ đạt giá trị nhỏ nhất bằng ?

A. 1.    B. 1/2.    C. 2.    D. 3/2.

Đáp án : D

Giải thích :

Điểm M(0,3/2) nằm trên trục Oy. Khoảng cách từ M đến hai trục là d = 3/2.

Xét những điểm M có hoành độ lớn hơn 3/2 ⇒ d = |x| + |y| > 3/2.

Xét những điểm M có hoành độ nhỏ hơn 3/2:

    Với 0 < x < 3/2 ⇒ y > 3/2 ⇒ d = |x| + |y| > 3/2

    Với -3/2 < x < 0; y > 0 ⇒ d = -x + x + 1 + 1/(x + 2) = 1 + 1/(x + 2); d' = -1/(x + 2)2 < 0.

   Chứng tỏ hàm số nghịch biến. Suy ra min d=y(0)=3/2.

Bài 14: Điều kiện của tham số m để trên đồ thị (Cm) của hàm số y = x3 -(3m - 1)x2 + 2mx + m + 1 có ít nhất hai điểm phân biệt đối xứng nhau qua trục Oy là

A. m ≤ 0.    B. m < 0.    C. m = -2.    D. m ≤ -2.

Đáp án : B

Giải thích :

Gọi M(x, y),N(-x, y) là hai điểm thuộc đồ thị (Cm)đối xứng nhau qua trục tung. Ta có

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

   Vậy m < 0.

Bài 15: Khoảng cách nhỏ nhất từ một điểm thuộc đồ thị (C) của hàm số y = (x2 + 4x + 5)/(x + 2) đến đường thẳng d: y + 3x + 6 = 0 bằng

A. 2.    B. 4.    C. √10.    D. 4/√10.

Đáp án : D

Giải thích :

Gọi M(x, x + 2 + 1/(x + 2)) ∈ (C).

Khoảng cách từ M đến d là h(M; d) cho bởi

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Khi x + 2 > 0:

Ta có 4(x + 2) + 1/(x + 2) ≥ 4 dấu bằng xảy ra khi 4(x + 2) = 1/(x + 2)⇔ (x + 2)2 = 1/4 ⇒ x = -3/2

   Vậy h(M; d) đạt giá trị nhỏ nhất là 4/√10.

Khi x + 2 < 0

Ta có -4(x + 2) - 1/((x + 2)) ≥ 4

Dấu bằng xảy ra ⇔ - 4(x + 2) = -1/(x + 2)⇔ (x + 2)2 = 1/4 ⇒ x = -5/2.

   Vậy h(M; d) đạt giá trị nhỏ nhất là 4/√10.

Xem thêm các dạng bài tập Toán lớp 12 có trong đề thi THPT Quốc gia khác:

Ngân hàng trắc nghiệm miễn phí ôn thi THPT Quốc Gia tại khoahoc.vietjack.com

KHÓA HỌC GIÚP TEEN 2002 ĐẠT 9-10 THI THPT QUỐC GIA

Tổng hợp các video dạy học từ các giáo viên giỏi nhất - CHỈ TỪ 399K tại khoahoc.vietjack.com


diem-thuoc-do-thi.jsp


Các loạt bài lớp 12 khác