Lý thuyết: Phương trình bậc hai với hệ số thực - Toán lớp 12



Lý thuyết: Phương trình bậc hai với hệ số thực

A. Tóm tắt lý thuyết

Quảng cáo

1. Căn bậc hai của số phức: Cho số phức w. Mỗi số phức z thỏa mãn z2 = w được gọi là một căn bậc hai của w .

2. Phương trình bậc hai với hệ số thực

    Cho phương trình bậc hai ax2 + bx + c = 0 (a, b, c ∈ R; a ≠ 0). Xét Δ = b2 - 4ac, ta có

    • Δ = 0: phương trình có nghiệm thực x = -b/2a .

    • Δ > 0 : phương trình có hai nghiệm thực được xác định bởi công thức: Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án.

    • Δ < 0 : phương trình có hai nghiệm phức được xác định bởi công thức: Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án.

    ** Chú ý.

    - Mọi phương trình bậc n: A0zn + A1zn-1 + ... + An-1z + An = 0 luôn có n nghiệm phức (không nhất thiết phân biệt).

    - Hệ thức Vi–ét đối với phương trình bậc hai với hệ số thực: Cho phương trình bậc hai ax2 + bx + c = 0 (a ≠ 0) có hai nghiệm phân biệt x1, x2 (thực hoặc phức). Ta có hệ thức Vi–ét

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án
Quảng cáo

B. Kĩ năng giải bài tập

1. Dạng 1: Tìm căn bậc hai của một số phức

    • Trường hợp w là số thực: Nếu a là một số thực

        + a < 0, a có các căn bậc hai là ±i√|a| .

        + a = 0, a có đúng một căn bậc hai là 0.

        + a > 0 , a có hai căn bậc hai là ±√a.

Ví dụ 1: Ta có hai căn bậc hai của – 1 là i và -i. Hai căn bậc hai của -a2 (a là số thực khác 0) là ai và -ai.

    • Trường hợp w = a + bi (a,b ∈ R, b ≠ 0)

    Gọi z = x + yi (x, y ∈ R) là một căn bậc hai của w khi và chỉ khi z2 = w, tức là

    (x + yi)2 = a + bi ⇔ x2 - y2 + 2xyi = a +bi ⇔ Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

    Mỗi cặp số thực (x; y) nghiệm đúng hệ phương trình trên cho ta một căn bậc hai x + yi của số phức w = a + bi.

Ví dụ 2: Tìm các căn bậc hai của w = -5 + 12i.

Hướng dẫn:

    Gọi z = x + yi (x, y ∈ R) là một căn bậc hai của số phức w = -5 _ 12i.

    Ta có z2 = w ⇔ (x + yi)2 = -5 + 12i ⇔ Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

    Vậy w = -5 + 12i có hai căn bậc hai là 2 + 3i và -2 - 3i.

2. Dạng 2: Giải phương trình bậc hai với hệ số thực và các dạng toán liên quan

    • Giải các phương trình bậc hai với hệ số thực

Ví dụ 3: Giải phương trình bậc hai sau: z2 - z + 1 = 0

Hướng dẫn:

    Ta có ± = b2 -4ac = -3 < 0

    Phương trình có hai nghiệm phức phân biệt là Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án.

    • Giải phương trình quy về phương trình bậc hai với hệ số thực

    Phương pháp 1: Phân tích đa thức thành nhân tử:

    – Bước 1: Nhẩm 1 nghiệm đặc biệt của phương trình.

        + Tổng các hệ số trong phương trình là 0 thì phương trình có một nghiệm x = 1.

        + Tổng các hệ số biến bậc chẵn bằng tổng các hệ số biến bậc lẻ thì phương trình có một nghiệm x = -1.

    Định lý Bơdu:

    Phần dư trong phép chia đa thức f(x) cho x - a bằng giá trị của đa thức f(x) tại x = a

    Tức là f(x) = (x - a)g(x) - f(a)

    Hệ quả: Nếu f(a) = 0 thì f(x)⋮ (x - a)

    Nếu f(x)⋮(x - a) thì f(a) = 0 hay f(x) = 0 có một nghiệm x = a

    – Bước 2: Đưa phương trình về phương trình bậc nhất hoặc bậc hai bằng cách hân tích đa thức ở vế trái của phương trình thành nhân tử (dùng hẳng đảng thức, chia đa thức hoặc sử dụng lược đồ Hoocne) như sau:

    Với đa thức f(x) = anxn + an-1xn-1 + ... + a1x + a0 chia cho x - a có thương là g(x) = bn-1xn-1 + bn-2xn-2 + ... + b1x + b0 dư r

an an-1 an-2 a2 a1 a0
a bn-1 = an bn-2 = abn-1 bn-3 = abn-2 b1 = ab2 b0 = ab1 + a1 r = ab0 + b0

    – Bước 3: Giải phương trình bậc nhất hoặc bậc hai, kết luận nghiệm

    Phương pháp 2: Đặt ẩn phụ:

    – Bước 1: Phân tích phương trình thành các đại lượng có dạng giống nhau.

    – Bước 2: Đặt ẩn phụ, nêu điều kiện của ẩn phụ (nếu có).

    – Bước 3: Đưa phương trình ban đầu về phương trình bậc nhất, bậc hai với ẩn mới.

    – Bước 4: Giải phương trình, kết luận nghiệm.

B. Kĩ năng sử dụng máy tính bỏ túi

    1. Chọn chế độ tính toán với số phức: MODE 2 màn hình hiện CMPLX.

    Nhập số thuần ảo i: Phím ENG

    2. Tìm các căn bậc hai của một số phức

Quảng cáo

Ví dụ 5: Khai căn bậc hai số phức z = -3-4i có kết quả:

Hướng dẫn:

    Cách 1:

    – Mode 2 (CMPLX)

    – Nhập hàm X2

    – Sử dụng phím CALC, nhập từng giá trị vào, giá trị nào ra kết quả bằng z thì ta nhận.

    Cách 2:

    – Mode 1 (COMP)

    – Nhấn Shift + (Pol), ta nhập Pol(-3;4)

    – Nhấn Shift – (Rec), ta nhập Rec(√X,Y:2), ta thu được kết quả X = 1; Y = 2.

    – Vậy 2 số phức cần tìm là 1 + 2i và -1 - 2i.

Lý thuyết và bài tập trắc nghiệm có đáp án và lời giải chi tiết Toán lớp 12 khác:

Ngân hàng trắc nghiệm miễn phí ôn thi THPT Quốc Gia tại khoahoc.vietjack.com

KHÓA HỌC GIÚP TEEN 2002 ĐẠT 9-10 THI THPT QUỐC GIA

Tổng hợp các video dạy học từ các giáo viên giỏi nhất - CHỈ TỪ 399K tại khoahoc.vietjack.com


so-phuc.jsp


Các loạt bài lớp 12 khác
Khóa học 12