Lý thuyết: Phương trình đường thẳng trong không gian - Toán lớp 12



Lý thuyết: Phương trình đường thẳng trong không gian

A. Tóm tắt lý thuyết

Quảng cáo

I. Phương trình đường thẳng:

    • Cho đường thẳng Δ đi qua điểm Mo(xo; yo; zo) và nhận vectơ a = (a1; a2; a3) với a12 + a22 + a32 ≠ 0 làm vectơ chỉ phương. Khi đó Δ có phương trình tham số là :

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

    • Cho đường thẳng Δ đi qua điểm Mo(xo; yo; zo) và nhận vectơ a = (a1; a2; a3) sao cho a1a2a3 ≠ 0 làm vectơ chỉ phương. Khi đó Δ có phương trình chính tắc là :

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

II. Góc:

1. Góc giữa hai đường thẳng:

    Δ1 có vectơ chỉ phương a1

    Δ2 có vectơ chỉ phương a2

    Gọi φ là góc giữa hai đường thẳng Δ1 và Δ2. Ta có:

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

2. Góc giữa đường thẳng và mặt phẳng:

    Δ có vectơ chỉ phương aΔ

    (α) có vectơ chỉ phương nα

    Gọi φ là góc giữa hai đường thẳng Δ và α. Ta có:

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

III. Khoảng cách:

1. Khoảng cách từ điểm M đến đường thẳng Δ:

    Δ đi qua điểm Mo và có vectơ chỉ phương aΔ

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án
Quảng cáo

2. Khoảng cách giữa hai đường thẳng chéo nhau:

    Δ1 đi qua điểm M và có vectơ chỉ phươnga1

    Δ2 đi qua điểm N và có vectơ chỉ phương a2

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

B. Kĩ năng giải bài tập

    Các dạng toán thường gặp

    1. Viết phương trình đường thẳng Δ đi qua hai điểm phân biệt A, B.

    Cách giải:

    Xác định vectơ chỉ phương của Δ là AB.

    2. Đường thẳng Δ đi qua điểm M và song song với d.

    Cách giải:

    Trong trường hợp đặc biệt:

    • Nếu Δ song song hoặc trùng bới trục Ox thì Δ có vectơ chỉ phương là aΔ = i = (1; 0; 0)

    • Nếu Δ song song hoặc trùng bới trục Oy thì Δ có vectơ chỉ phương là aΔ = j = (0; 1; 0)

    • Nếu Δ song song hoặc trùng bới trục Oz thì Δ có vectơ chỉ phương là aΔ = k = (0; 1; 0)

    Các trường hợp khác thì Δ có vectơ chỉ phương là aΔ = ad, với ad là vectơ chỉ phương của d

    3. Viết phương trình đường thẳng Δ đi qua điểm M và vuông góc với mặt phẳng (α).

    Cách giải:

    Xác định vectơ chỉ phương của Δ là aΔ = nα, với nα là vectơ pháp tuyến của (α).

    4. Viết phương trình đường thẳng Δ đi qua điểm M và vuông góc với hai đường thẳng d1, d2 (hai đường thẳng không cùng phương).

    Cách giải:

    Xác định vectơ chỉ phương của Δ là aΔ = [a1, a2], với a1, a2 lần lượt là vectơ chỉ phương của d1, d2.

    5. Viết phương trình đường thẳng Δ đi qua điểm M vuông góc với đường thẳng d và song song với mặt phẳng (α).

    Cách giải:

    Xác định vectơ chỉ phương của Δ là aα = [ad, nα], với ad là vectơ chỉ phương của d, nα là vectơ pháp tuyến của (α).

    6. Viết phương trình đường thẳng Δ đi qua điểm A và song song với hai mặt phẳng (α), (β); ((α), (β) là hai mặt phẳng cắt nhau)

    Cách giải:

    Xác định vectơ chỉ phương của Δ là aΔ = [nα, nβ], với nα, nβ lần lượt là vectơ pháp tuyến của (α), (β).

Quảng cáo

    7. Viết phương trình đường thẳng Δ là giao tuyến của hai mặt phẳng (α) và (β).

    Cách giải:

    • Lấy một điểm bất kì trên Δ, bằng cách cho một ẩn bằng một số tùy ý.

    • Xác định vectơ chỉ phương của Δ là aΔ = [nα, nβ], với nα, nβ lần lượt là vectơ pháp tuyến của (α), (β).

    8. Viết phương trình đường thẳng Δ đi qua điểm A và cắt hai đường thẳng d1, d2 (A ∉ d1, A ∉ d2).

    Cách giải:

    Xác định vectơ chỉ phương của Δ là aΔ = [n1, n2], với n1, n2 lần lượt là vectơ pháp tuyến của mp(A, d1), mp(A, d2).

    9. Viết phương trình đường thẳng Δ nằm trong mặt phẳng (α) và cắt hai đường thẳng d1, d2.

    Cách giải:

    Xác định vectơ chỉ phương của Δ là aΔ = AB, với A = d1 ∩ (α), B = d2 ∩ (α)

    10. Viết phương trình đường thẳng Δ đi qua điểm A, vuông góc và cắt d.

    Cách giải:

    • Xác định B = Δ ∩ d.

    • Viết phương trình đường thẳng Δ đi qua A, B.

    11. Viết phương trình đường thẳng Δ đi qua điểm A, vuông góc với d1 và cắt d2, với A ∉ d2.

    Cách giải:

    • Xác định B = Δ ∩ d2.

    • Viết phương trình đường thẳng Δ đi qua A, B.

    12. Viết phương trình đường thẳng Δ đi qua điểm A, cắt đường thẳng d và song song với mặt phẳng (α).

    Cách giải:

    • Xác định B = Δ ∩ d.

    • Viết phương trình đường thẳng Δ đi qua A, B.

    13. Viết phương trình đường thẳng Δ nằm trong mặt phẳng (α) cắt và vuông góc đường thẳng d.

    Cách giải:

    • Xác định A = d ∩ (α).

    • Đường thẳng Δ đi qua A và có vectơ chỉ phương của Δ là aΔ = [ad, nα], với ad là vectơ chỉ phương của d, nα là vectơ pháp tuyến của (α).

    14. Viết phương trình đường thẳng Δ đi qua giao điểm A của đường thẳng d và mặt phẳng (α), nằm trong (α) và vuông góc đường thẳng d (ở đây d không vuông góc với (α)) .

    Cách giải:

    • Xác định A = d ∩ (α).

    • Đường thẳng Δ đi qua A và có vectơ chỉ phương của Δ là aΔ = [ad, nα], với ad là vectơ chỉ phương của d, nα là vectơ pháp tuyến của (α).

    15. Viết phương trình đường thẳng Δ là đường vuông góc chung của hai đường thẳng chéo nhau d1, d2.

    Cách giải:

    • Xác định A = Δ ∩ d1, B = Δ ∩ d2 sao cho Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

    • Viết phương trình đường thẳng Δ đi qua hai điểm A, B.

    16. Viết phương trình đường thẳng Δ song song với đường thẳng d và cắt cả hai đường thẳng d1, d2.

    Cách giải:

    • Xác định A = Δ ∩ d1, B = Δ ∩ d2 sao cho AB, ad cùng phương, với ad là vectơ chỉ phương của d.

    • Viết phương trình đường thẳng Δ đi qua điểm A và có vectơ chỉ phương ad = aα.

    17. Viết phương trình đường thẳng Δ vuông góc với mặt phẳng (α) và cắt cả hai đường thẳng d1, d2.

    Cách giải:

    • Xác định A = Δ ∩ d1, B = Δ ∩ d2 sao cho AB, nα cùng phương, với nα là vectơ pháp tuyến của (α).

    • Viết phương trình đường thẳng Δ đi qua điểm A và có vectơ chỉ phương ad = nα.

    18. Viết phương trình Δ là hình chiếu vuông góc của d lên mặt phẳng (α).

    Cách giải :

    Xác định H ∈ Δ sao cho AHad,với ad là vectơ chỉ phương của d.

    • Viết phương trình mặt phẳng (β) chứa d và vuông góc với mặt phẳng (α).

    • Viết phương trình đường thẳng Δ là giao tuyến của hai mặt phẳng (α) và (β)

    19. Viết phương trình Δ là hình chiếu song song của d lên mặt phẳng (α) theo phương d'.

    Cách giải :

    • Viết phương trình mặt phẳng (β) chứa d và có thêm một véc tơ chỉ phương ud'.

    • Viết phương trình đường thẳng Δ là giao tuyến của hai mặt phẳng (α) và (β).

Quảng cáo

Lý thuyết và bài tập trắc nghiệm có đáp án và lời giải chi tiết Toán lớp 12 khác:

Ngân hàng trắc nghiệm miễn phí ôn thi THPT Quốc Gia tại khoahoc.vietjack.com

KHÓA HỌC GIÚP TEEN 2002 ĐẠT 9-10 THI THPT QUỐC GIA

Tổng hợp các video dạy học từ các giáo viên giỏi nhất - CHỈ TỪ 399K tại khoahoc.vietjack.com


phuong-phap-toa-do-trong-khong-gian.jsp


Các loạt bài lớp 12 khác
Khóa học 12