Tìm m để hàm số có 3 điểm cực trị tạo thành tam giác có diện tích (cực hay, có lời giải)
Bài viết Tìm m để hàm số có 3 điểm cực trị tạo thành tam giác có diện tích với phương pháp giải chi tiết giúp học sinh ôn tập, biết cách làm bài tập Tìm m để hàm số có 3 điểm cực trị tạo thành tam giác có diện tích.
Tìm m để hàm số có 3 điểm cực trị tạo thành tam giác có diện tích (cực hay, có lời giải)
Bài giảng: Các dạng bài tìm cực trị của hàm số - Cô Nguyễn Phương Anh (Giáo viên VietJack)
A. Phương pháp giải
Cho hàm số: y = ax4 + bx2 + c (a ≠ 0) có đồ thị là (C).
(C) có ba điểm cực trị y' = 0 có 3 nghiệm phân biệt
Đồ thị hàm số có 3 điểm cực trị là:
Tam giác ABC cân tại A, gọi H là trung điểm của BC thì
Chú ý: Đồ thị hàm trùng phương có 3 điểm cực trị lập thành 1 tam giác có diện tích S0
⇔ 32a3 (S0)2 + b5 = 0
B. Ví dụ minh họa
Ví dụ 1: Tìm tất cả các giá trị thực của m để đồ thị hàm số y = x4 - mx2 + 1 có ba điểm cực trị lập thành một tam giác có diện tích bằng 1.
Lời giải
Chọn B
Cách 1:
Tam giác ABC cân tại A, gọi H là trung điểm của BC thì
Cách 2:
Áp dụng công thức giải nhanh ta có đồ thị hàm số có 3 điểm cực trị lập thành tam giác có diện tích bằng 1 ⇔ 32.13.12 + (-m)5 = 0 ⇔ m = 2
Ví dụ 2: Cho hàm số y = -x4 + 2(m - 2)x2 + m2 - 5m + 5. Tìm tất cả các giá trị của m để đồ thị hàm số có 3 điểm cực trị tạo thành một tam giác có diện tích bằng 1.
A. m = ±3.
B. m = 3.
C. m = 2.
D. m = ±2.
Lời giải
Chọn B
Cách 1:
Ta có: y' = -4x3 + 4(m - 2)x = -4x[x2 - (m - 2)].
Đồ thị hàm số có 3 điểm cực trị khi và chỉ khi phương trình y' = 0 có 3 nghiệm phân biệt
⇔ m - 2 > 0 ⇔ m > 2.
Vậy với m = 3 thì đồ thị hàm số đã cho có 3 điểm cực trị tạo thành một tam giác có diện tích bằng 1.
Cách 2: Sử dụng công thức giải nhanh.
Đồ thị hàm số có 3 điểm cực trị tạo thành một tam giác có diện tích bằng 1 thì
32.(-1)3.12 + [2(m - 2)]5 = 0 ⇔ 1 = m - 2 ⇔ m = 3.
Ví dụ 3: Để đồ thị hàm số y = x4 - 2mx2 + m - 1 có ba điểm cực trị tạo thành một tam giác có diện tích bằng 2, giá trị của tham số m thuộc khoảng nào sau đây?
A. (2;3).
B. (-1;0).
C. (0;1).
D. (1;2).
Lời giải
Chọn D
Ví dụ 4: Tìm tất cả các giá trị của tham số m để đồ thị hàm số y = x4 - 2(1 - m2)x2 + m + 1 có 3 điểm cực trị tạo thành tam giác có diện tích lớn nhất.
A. m = -1.
B. m = 0.
C. m = 1.
D. m = 2.
Lời giải
Chọn B
Ta có y' = 4x3 - 4(1 - m2)x.
Hàm số có 3 điểm cực trị ⇔ y' = 4x(x2 - (1 - m2)) = 0 có 3 nghiệm phân biệt
⇔ -1 < m < 1.
Khi đó tọa độ 3 điểm cực trị của đồ thị hàm số là
Xem thêm các dạng bài tập Toán lớp 12 có trong đề thi THPT Quốc gia khác:
- Tìm m để hàm số có 3 điểm cực trị tạo thành tam giác đều (cực hay, có lời giải)
- Tìm m để hàm số có 3 điểm cực trị tạo thành tam giác vuông (cực hay, có lời giải)
- Viết phương trình đường thẳng đi qua 2 điểm cực trị (cực hay, có lời giải)
- Cho bảng biến thiên tìm đường tiệm cận đứng, tiệm cận ngang (cực hay, có lời giải)
Sách VietJack thi THPT quốc gia 2025 cho học sinh 2k7:
- Giải Tiếng Anh 12 Global Success
- Giải sgk Tiếng Anh 12 Smart World
- Giải sgk Tiếng Anh 12 Friends Global
- Lớp 12 Kết nối tri thức
- Soạn văn 12 (hay nhất) - KNTT
- Soạn văn 12 (ngắn nhất) - KNTT
- Giải sgk Toán 12 - KNTT
- Giải sgk Vật Lí 12 - KNTT
- Giải sgk Hóa học 12 - KNTT
- Giải sgk Sinh học 12 - KNTT
- Giải sgk Lịch Sử 12 - KNTT
- Giải sgk Địa Lí 12 - KNTT
- Giải sgk Giáo dục KTPL 12 - KNTT
- Giải sgk Tin học 12 - KNTT
- Giải sgk Công nghệ 12 - KNTT
- Giải sgk Hoạt động trải nghiệm 12 - KNTT
- Giải sgk Giáo dục quốc phòng 12 - KNTT
- Giải sgk Âm nhạc 12 - KNTT
- Giải sgk Mĩ thuật 12 - KNTT
- Lớp 12 Chân trời sáng tạo
- Soạn văn 12 (hay nhất) - CTST
- Soạn văn 12 (ngắn nhất) - CTST
- Giải sgk Toán 12 - CTST
- Giải sgk Vật Lí 12 - CTST
- Giải sgk Hóa học 12 - CTST
- Giải sgk Sinh học 12 - CTST
- Giải sgk Lịch Sử 12 - CTST
- Giải sgk Địa Lí 12 - CTST
- Giải sgk Giáo dục KTPL 12 - CTST
- Giải sgk Tin học 12 - CTST
- Giải sgk Hoạt động trải nghiệm 12 - CTST
- Giải sgk Âm nhạc 12 - CTST
- Lớp 12 Cánh diều
- Soạn văn 12 Cánh diều (hay nhất)
- Soạn văn 12 Cánh diều (ngắn nhất)
- Giải sgk Toán 12 Cánh diều
- Giải sgk Vật Lí 12 - Cánh diều
- Giải sgk Hóa học 12 - Cánh diều
- Giải sgk Sinh học 12 - Cánh diều
- Giải sgk Lịch Sử 12 - Cánh diều
- Giải sgk Địa Lí 12 - Cánh diều
- Giải sgk Giáo dục KTPL 12 - Cánh diều
- Giải sgk Tin học 12 - Cánh diều
- Giải sgk Công nghệ 12 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 12 - Cánh diều
- Giải sgk Giáo dục quốc phòng 12 - Cánh diều
- Giải sgk Âm nhạc 12 - Cánh diều