Viết phương trình đường thẳng đi qua 2 điểm cực trị (cực hay, có lời giải)
Bài viết Viết phương trình đường thẳng đi qua 2 điểm cực trị với phương pháp giải chi tiết giúp học sinh ôn tập, biết cách làm bài tập Viết phương trình đường thẳng đi qua 2 điểm cực trị.
Viết phương trình đường thẳng đi qua 2 điểm cực trị (cực hay, có lời giải)
Bài giảng: Các dạng bài tìm cực trị của hàm số - Cô Nguyễn Phương Anh (Giáo viên VietJack)
A. Phương pháp giải
Xét hàm số y = ax3 + bx2 + cx + d(a ≠ 0)
Hàm số có cực trị khi và chỉ khi phương trình y' = 0 có hai nghiệm phân biệt x1; x2
Thực hiện phép chia f(x) cho f'(x) ta được f(x) = Q(x).f'(x) + ax + b
Gọi (x1;y1) và (x2;y2) là các điểm cực trị thì f'(x1) = f'(x2) = 0
Do đó, ta có
Suy ra phương trình đường thẳng đi qua 2 điểm cực trị là y = ax + b.
B. Ví dụ minh họa
Ví dụ 1: Viết phương trình đường thẳng đi qua các điểm cực trị của hàm số y = x3 - 2x2 - x + 1
Lời giải
Ta có y' = 3x2 - 4x - 1, y' = 0 có hai nghiệm phân biệt nên hàm số luôn có 2 điểm cực trị
Thực hiện phép chia y cho y' ta được
Do đó đường thẳng đi qua hai điểm cực trị có phương trình
Ví dụ 2: Biết đồ thị hàm số y = x3 - 3mx2 + 3(m2 - 1)x - m3 có hai điểm cực trị A và B. Viết phương trình đường thẳng AB.
Lời giải
Thực hiện phép chia y cho y' ta được phương trình đường thẳng đi qua hai điểm cực trị A và B là
AB: y = (-m2 + 6m - 9)x - m2 + 3m - 3
Ví dụ 3: Tìm m để đường thẳng đi qua hai điểm cực trị của đồ thị hàm số y = 2x3 + 3(m - 1)x2 + 6(m - 2)x - 1 song song với đường thẳng y = -4x + 1.
Lời giải
Ta có y' = 6x2 + 6(m - 1)x + 6(m - 2)
Hàm số có cực trị ⇔ y' = 0 có 2 nghiệm phân biệt
⇔ Δ' > 0 ⇔ 9(m - 1)2 - 36(m - 2) > 0 ⇔ 9(m - 3)2 > 0 ⇔ m ≠ 3
Thực hiện phép chia y cho y' ta có phương trình đường thẳng đi qua 2 điểm cực trị là:
d: y = (-m2 + 6m - 9)x - m2 + 3m - 3
Khi đó d song song với đường thẳng y = -4x + 1
Ví dụ 4: Tìm m để đồ thị hàm số y = x3 - 3x2 + mx có hai điểm cực trị Avà B đối xứng nhau qua đường thẳng x - 2y - 5 = 0
Lời giải
Ta có: y' = 3x2 - 6x + m; y' = 0 ⇔ 3x2-6x + m = 0
Hàm số có hai cực trị khi và chỉ khi Δ' = 9 - 3m > 0 ⇔ m < 3(*)
Thực hiện phép chia y cho y', suy ra phương trình AB:
Đường thẳng d: x - 2y - 5 = 0 được viết lại
Do A,B đối xứng nhau qua dthì thỏa mãn điều kiên cần là (thỏa mãn (*))
Với m = 0 hàm số có dạng y = x3 - 3x2 có hai điểm cực trị A(0;0), B(2;-4)
Khi đó trung điểm AB là I(1;-2) ∈ d (thỏa mãn điều kiện đủ)
Vậy giá trị m = 0 là đáp số của bài toán.
C. Bài tập tự luyện
Bài 1. Tìm tất cả các giá trị của tham số m để đồ thị hàm số y = x3 + 2x2 + (m − 3)x + m có hai điểm cực trị và điểm M(9; −5) nằm trên đường thẳng đi qua hai điểm cực trị của đồ thị.
Bài 2. Tính khoảng cách từ điểm P(3; 1) đến đường thẳng qua hai điểm cực trị của đồ thị của hàm số y = x3 − 3x2 − (m2 − 2)x + m2 sao cho có giá trị lớn nhất?
Bài 3. Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số y = 2x3 + 3(m − 3)x2 − 3m + 11 có hai điểm cực trị đồng thời các điểm cực trị và điểm N(2; −1) thẳng hàng.
Bài 4. Viết phương trình đường thẳng đi qua hai điểm cực trị của hàm số y = x3 – 3x2 + 1.
Bài 5. Tìm giá trị thực của tham số m để đồ thị hàm số y = −x3 + 3mx2 − 3m − 1 có hai điểm cực trị đối xứng với nhau qua đường thẳng d: x + 8y – 74 = 0.
Bài 6. Biết rằng hàm số f(x) = có 2 điểm cực trị x1, x2. Khi đó hãy tính giá trị của biểu thức .
Bài 7. Gọi S là tập hợp tất cả các giá trị thực của tham số m để đồ thị hàm số có hai điểm cực trị A, B sao cho tam giác OAB vuông tại O. Tính diện tích của SOAB.
Bài 8. Viết phương trình đường thẳng đi qua các điểm cực trị của hàm số sau:
a) y = x3 – 2x2 – x + 1;
b) y = 3x2 – 2x3.
Bài 9. Cho hàm số y = 2x3 + 3(m – 1)x2 + 6(m – 2)x – 1 (1).
Tìm m để hàm số (1) có đường thẳng đi qua hai điểm cực trị song song với đường thẳng y = – 4x + 1.
Bài 10. Cho hàm số y = x3 + mx2 + 7x + 3 (*).
Tìm m để hàm số (*) có đường thẳng đi qua hai điểm cực trị vuông góc với đường thẳng y = x + 2012.
Xem thêm các dạng bài tập Toán lớp 12 có trong đề thi THPT Quốc gia khác:
- Tìm m để hàm số có 3 điểm cực trị tạo thành tam giác đều (cực hay, có lời giải)
- Tìm m để hàm số có 3 điểm cực trị tạo thành tam giác vuông (cực hay, có lời giải)
- Tìm m để hàm số có 3 điểm cực trị tạo thành tam giác có diện tích (cực hay, có lời giải)
- Cho bảng biến thiên tìm đường tiệm cận đứng, tiệm cận ngang (cực hay, có lời giải)
Sách VietJack thi THPT quốc gia 2025 cho học sinh 2k7:
- Giải Tiếng Anh 12 Global Success
- Giải sgk Tiếng Anh 12 Smart World
- Giải sgk Tiếng Anh 12 Friends Global
- Lớp 12 Kết nối tri thức
- Soạn văn 12 (hay nhất) - KNTT
- Soạn văn 12 (ngắn nhất) - KNTT
- Giải sgk Toán 12 - KNTT
- Giải sgk Vật Lí 12 - KNTT
- Giải sgk Hóa học 12 - KNTT
- Giải sgk Sinh học 12 - KNTT
- Giải sgk Lịch Sử 12 - KNTT
- Giải sgk Địa Lí 12 - KNTT
- Giải sgk Giáo dục KTPL 12 - KNTT
- Giải sgk Tin học 12 - KNTT
- Giải sgk Công nghệ 12 - KNTT
- Giải sgk Hoạt động trải nghiệm 12 - KNTT
- Giải sgk Giáo dục quốc phòng 12 - KNTT
- Giải sgk Âm nhạc 12 - KNTT
- Giải sgk Mĩ thuật 12 - KNTT
- Lớp 12 Chân trời sáng tạo
- Soạn văn 12 (hay nhất) - CTST
- Soạn văn 12 (ngắn nhất) - CTST
- Giải sgk Toán 12 - CTST
- Giải sgk Vật Lí 12 - CTST
- Giải sgk Hóa học 12 - CTST
- Giải sgk Sinh học 12 - CTST
- Giải sgk Lịch Sử 12 - CTST
- Giải sgk Địa Lí 12 - CTST
- Giải sgk Giáo dục KTPL 12 - CTST
- Giải sgk Tin học 12 - CTST
- Giải sgk Hoạt động trải nghiệm 12 - CTST
- Giải sgk Âm nhạc 12 - CTST
- Lớp 12 Cánh diều
- Soạn văn 12 Cánh diều (hay nhất)
- Soạn văn 12 Cánh diều (ngắn nhất)
- Giải sgk Toán 12 Cánh diều
- Giải sgk Vật Lí 12 - Cánh diều
- Giải sgk Hóa học 12 - Cánh diều
- Giải sgk Sinh học 12 - Cánh diều
- Giải sgk Lịch Sử 12 - Cánh diều
- Giải sgk Địa Lí 12 - Cánh diều
- Giải sgk Giáo dục KTPL 12 - Cánh diều
- Giải sgk Tin học 12 - Cánh diều
- Giải sgk Công nghệ 12 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 12 - Cánh diều
- Giải sgk Giáo dục quốc phòng 12 - Cánh diều
- Giải sgk Âm nhạc 12 - Cánh diều