Tìm m để hàm số có 3 điểm cực trị tạo thành tam giác vuông (cực hay, có lời giải)
Bài viết Tìm m để hàm số có 3 điểm cực trị tạo thành tam giác vuông với phương pháp giải chi tiết giúp học sinh ôn tập, biết cách làm bài tập Tìm m để hàm số có 3 điểm cực trị tạo thành tam giác vuông.
Tìm m để hàm số có 3 điểm cực trị tạo thành tam giác vuông (cực hay, có lời giải)
Bài giảng: Các dạng bài tìm cực trị của hàm số - Cô Nguyễn Phương Anh (Giáo viên VietJack)
A. Phương pháp giải
Cho hàm số: y = ax4 + bx2 + c (a ≠ 0) có đồ thị là (C).
(C) có ba điểm cực trị y' = 0 có 3 nghiệm phân biệt
Chú ý: Đồ thị hàm trùng phương có 3 điểm cực trị lập thành 1 tam giác vuông ⇔ 8a + b3 = 0
B. Ví dụ minh họa
Ví dụ 1: Tìm tất cả các giá trị thực của m để đồ thị hàm số y = x4 - mx2 + 1 có ba điểm cực trị là ba đỉnh của một tam giác vuông.
Lời giải
Chọn B
Cách 1:
Cách 2:
Áp dụng công thức giải nhanh ta có đồ thị hàm số có 3 điểm cực trị lập thành 1 tam giác vuông
⇔ 8 + (-m)3 = 0 ⇔ m = 2
Ví dụ 2: Tìm m để đồ thị hàm số f(x) = x4 - 2mx2 + 2m + m4 có điểm cực đại và điểm cực tiểu lập thành tam giác vuông cân.
Lời giải
Chọn B
Cách 1:
Để hàm số có CĐ, CT ⇔ f'(x) = 0 có 3 nghiệm phân biệt ⇔ m > 0
Do tính chất hàm trùng phương nên tam giác ABC luôn cân tại A, nên tam giác ABC vuông cân tại A
Kết hợp điều kiện ta có m = 1
Cách 2:
Áp dụng công thức giải nhanh ta có đồ thị hàm số có 3 điểm cực trị lập thành 1 tam giác vuông cân
⇔ 8 + (-2m)3=0 ⇔ m = 1
Ví dụ 3: Tìm các giá trị của tham số m để đồ thị hàm số y = x4 - 2(m + 1)x2 + m2 có ba điểm cực trị là ba đỉnh của một tam giác vuông cân.
Lời giải
Chọn B
Ví dụ 3:Tìm m để hàm số y = x4 - 2m2x2 + 1 có 3 điểm cực trị là 3 đỉnh của một tam giác vuông cân
A. m = -1
B. m = 1
C. m = 0
D. m = -1 hoặc m = 1
Lời giải
Chọn D
TXĐ: D = R
Hàm số có 3 cực trị ⇔ y' = 4x(x2 - m2) = 0 có 3 nghiệm phân biệt ⇔ m ≠ 0
Khi đó đồ thị có 3 điểm cực trị là A(0,1); B(-m,1-m4); C(m,1-m4).
C. Bài tập tự luyện
Bài 1. Tìm m để hàm số y = có các điểm cực đại, cực tiểu đồng thời các điểm đó tạo thành một tam giác vuông.
Bài 2. Cho hàm số y = x4 – 2m2x2 + 1, với m là tham số. Tìm m để đồ thị hàm số có ba điểm cực trị là ba đỉnh của một tam giác vuông cân.
Bài 3. Tìm m để hàm số y = – x4 + (m – 2016)x2 + 2018 có ba cực trị tạo thành tam giác vuông cân tại A.
Bài 4. Tìm giá trị của m để đồ thị hàm số y = x4 – 2mx2 + 2m – 3 có ba điểm cực trị là ba đỉnh của tam giác vuông cân.
Bài 5. Tìm m trong mỗi trường hợp sau để hàm số có 3 điểm cực trị tạo thành tam giác vuông cân
a) y = x4 – (m + 2)x2 + 3
b) y = x4 + 2(m + 3)x2 + m2.
Xem thêm các dạng bài tập Toán lớp 12 có trong đề thi THPT Quốc gia khác:
- Tìm m để hàm số có 3 điểm cực trị tạo thành tam giác đều (cực hay, có lời giải)
- Tìm m để hàm số có 3 điểm cực trị tạo thành tam giác có diện tích (cực hay, có lời giải)
- Viết phương trình đường thẳng đi qua 2 điểm cực trị (cực hay, có lời giải)
- Cho bảng biến thiên tìm đường tiệm cận đứng, tiệm cận ngang (cực hay, có lời giải)
Sách VietJack thi THPT quốc gia 2025 cho học sinh 2k7:
- Giải Tiếng Anh 12 Global Success
- Giải sgk Tiếng Anh 12 Smart World
- Giải sgk Tiếng Anh 12 Friends Global
- Lớp 12 Kết nối tri thức
- Soạn văn 12 (hay nhất) - KNTT
- Soạn văn 12 (ngắn nhất) - KNTT
- Giải sgk Toán 12 - KNTT
- Giải sgk Vật Lí 12 - KNTT
- Giải sgk Hóa học 12 - KNTT
- Giải sgk Sinh học 12 - KNTT
- Giải sgk Lịch Sử 12 - KNTT
- Giải sgk Địa Lí 12 - KNTT
- Giải sgk Giáo dục KTPL 12 - KNTT
- Giải sgk Tin học 12 - KNTT
- Giải sgk Công nghệ 12 - KNTT
- Giải sgk Hoạt động trải nghiệm 12 - KNTT
- Giải sgk Giáo dục quốc phòng 12 - KNTT
- Giải sgk Âm nhạc 12 - KNTT
- Giải sgk Mĩ thuật 12 - KNTT
- Lớp 12 Chân trời sáng tạo
- Soạn văn 12 (hay nhất) - CTST
- Soạn văn 12 (ngắn nhất) - CTST
- Giải sgk Toán 12 - CTST
- Giải sgk Vật Lí 12 - CTST
- Giải sgk Hóa học 12 - CTST
- Giải sgk Sinh học 12 - CTST
- Giải sgk Lịch Sử 12 - CTST
- Giải sgk Địa Lí 12 - CTST
- Giải sgk Giáo dục KTPL 12 - CTST
- Giải sgk Tin học 12 - CTST
- Giải sgk Hoạt động trải nghiệm 12 - CTST
- Giải sgk Âm nhạc 12 - CTST
- Lớp 12 Cánh diều
- Soạn văn 12 Cánh diều (hay nhất)
- Soạn văn 12 Cánh diều (ngắn nhất)
- Giải sgk Toán 12 Cánh diều
- Giải sgk Vật Lí 12 - Cánh diều
- Giải sgk Hóa học 12 - Cánh diều
- Giải sgk Sinh học 12 - Cánh diều
- Giải sgk Lịch Sử 12 - Cánh diều
- Giải sgk Địa Lí 12 - Cánh diều
- Giải sgk Giáo dục KTPL 12 - Cánh diều
- Giải sgk Tin học 12 - Cánh diều
- Giải sgk Công nghệ 12 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 12 - Cánh diều
- Giải sgk Giáo dục quốc phòng 12 - Cánh diều
- Giải sgk Âm nhạc 12 - Cánh diều