Viết phương trình đường thẳng đi qua 1 điểm, song song với mặt phẳng và vuông góc với đường thẳng
Bài viết Viết phương trình đường thẳng đi qua 1 điểm, song song với mặt phẳng và vuông góc với đường thẳng với phương pháp giải chi tiết giúp học sinh ôn tập, biết cách làm bài tập Viết phương trình đường thẳng đi qua 1 điểm, song song với mặt phẳng và vuông góc với đường thẳng.
- Cách giải bài tập Viết phương trình đường thẳng đi qua 1 điểm, song song với mặt phẳng và vuông góc với đường thẳng
- Ví dụ minh họa Viết phương trình đường thẳng đi qua 1 điểm, song song với mặt phẳng và vuông góc với đường thẳng
- Bài tập vận dụng Viết phương trình đường thẳng đi qua 1 điểm, song song với mặt phẳng và vuông góc với đường thẳng
Viết phương trình đường thẳng đi qua 1 điểm, song song với mặt phẳng và vuông góc với đường thẳng
Bài giảng: Cách viết phương trình đường thẳng cơ bản - Cô Nguyễn Phương Anh (Giáo viên VietJack)
A. Phương pháp giải
Do đường thẳng song song với mặt phẳng ( P) và vuông góc với đường thẳng d’ nên
Suy ra
Mà d’ không vuông góc với (P)
=>Véc tơ chỉ phương của d là
+ Đường thẳng d đi qua điểm M( đã biết) và nhận vecto ud→ làm vecto chỉ phương
=> phương trình tham số và phương trình chính tắc của đường thẳng d.
B. Ví dụ minh họa
Ví dụ 1. Viết phương trình đường thẳng d đi qua điểm M (1; 2; -1), song song với mặt phẳng (P): x + y – z = 3 và vuông góc với đường thẳng d’:
A.
B.
C.
D.
Lời giải:
Vecto pháp tuyến của mặt phẳng (P) là:
Vecto chỉ phương của đường thẳng d’ là:
Do đường thẳng d song song với mặt phẳng (P) và vuông góc với đường thẳng d’ nên một vecto chỉ phương của đường thẳng d là:
d đi qua điểm M (1; 2; -1)
Vậy phương trình đường thẳng d là
Chọn B.
Ví dụ 2: Viết phương trình đường thẳng d đi qua điểm M (0; 1; 2), song song với mặt phẳng (Oxy) và vuông góc với đường thẳng d':
A .
B.
C.
D. Đáp án khác
Lời giải:
Phương trình mặt phẳng ( Oxy) là: z= 0; vecto pháp tuyến của mặt phẳng này là:
Vecto chỉ phương của đường thẳng d’ là:
Do đường thẳng d song song với mặt phẳng (Oxy) và vuông góc với đường thẳng d’ nên một vecto chỉ phương của đường thẳng d là:
d đi qua điểm M (0; 1; 2)
Vậy phương trình đường thẳng d là
Chọn C.
Ví dụ 3 : Trong không gian với hệ tọa độ Oxyz ; cho mặt phẳng (P) : y- 2z- 1= 0 và đường thẳng Δ : . Phương trình chính tắc đường thẳng d đi qua điểm B( 2 ; 2 ; - 2) song song với (P) và vuông góc với Δ là
A.
B.
C.
D.
Lời giải:
Đường thẳng Δ có vectơ chỉ phương
Mặt phẳng (P) có vectơ pháp tuyến
Gọi ud→ là vectơ chỉ phương của d.
Do đường thẳng d song song với mặt phẳng (P) và vuông góc với đường thẳng Δ nên một vecto chỉ phương của đường thẳng d là:
Vậy phương trình chính tắc của d là:
Chọn D.
Ví dụ 4: Trong không gian với hệ tọa độ Oxyz; cho mặt phẳng (P): 2x+ y- 5z+ 1= 0. Phương trình đường thẳng d đi qua điểm A (1;1;1) song song với ( P) và vuông góc với trục tung là
A.
B.
C.
D.
Lời giải:
Trục tung Oy có vectơ chỉ phương .
Mặt phẳng (P) có vectơ pháp tuyến .
Do đường thẳng d song song với mặt phẳng (P) và vuông góc với trục tung nên một vecto chỉ phương của đường thẳng d là: .
Đường thẳng d đi qua điểm A( 1; 1; 1) và có vectơ chỉ phương là
Vậy phương trình của d là:
Chọn D.
Ví dụ 5: Trong không gian với hệ tọa độ Oxyz; cho mặt cầu (S): x2 +(y-1)2 +(z+ 2)2 = 4. Phương trình đường thẳng d đi qua tâm của mặt cầu (S), song song với mặt phẳng (P): x+ y- 2z= 0 và vuông góc với đường thẳng Δ: là.
A.
B.
C.
D.
Lời giải:
+ Tâm của mặt cầu ( S) là I( 0 ;1 ; -2) .
+ Đường thẳng Δ có vectơ chỉ phương .
+ Mặt phẳng ( P) có vectơ pháp tuyến
+ Đường thẳng d đi qua điểm I( 0 ; 1 ; -2) và có vectơ chỉ phương là :
Vậy phương trình của d là
Chọn A.
Ví dụ 6: Trong không gian với hệ tọa độ Oxyz; cho mặt phẳng (P): x- 2y+ 2z- 5= 0 và hai điểm A(-3; 0; 1); B( 1; -1; 3). Trong các đường thẳng đi qua A và song song với (P), đường thẳng mà khoảng cách từ B đến đường thẳng đó là nhỏ nhất có phương trình là.
A.
B.
C.
D.
Lời giải:
Gọi d là đường thẳng cần tìm
+ Gọi mặt phẳng (Q) qua A( -3; 0;1) và song song với (P).
Khi đó: (Q) có dạng: x- 2y+ 2z + D= 0
Thay tọa độ điểm A vào phương trình ( Q) ta được : -3- 2.0+ 2.1+ D= 0 ⇔ D = 1
Vậy phương trình ( Q): x- 2y + 2z +1= 0
+ Gọi K; H lần lượt là hình chiếu của B lên d; (Q).
Ta có: d( B; d) = BK ≥BH
Do đó AH là đường thẳng cần tìm.
+ Mặt phẳng ( Q) có vectơ pháp tuyến
BH qua B và có vectơ chỉ phương
=> Phương trình đường thẳng BH là:
+ Đường thẳng d đi qua điểm A( -3; 0; 1) và có vectơ chỉ phương
Vậy phương trình của d là
Chọn A.
Ví dụ 7: Trong không gian với hệ trục tọa độ Oxyz; cho mặt phẳng (P) đi qua ba điểm A( 2; 0; 0); B( 0; 3; 0) và C( 0; 0; 1); đường thẳng d: . Viết phương trình đường thẳng Δ đi qua M (-1; 2; 0)song song với mặt phẳng (P) và vuông góc với đường thẳng d.
A.
B.
C.
D. Đáp án khác
Lời giải:
+ Phương trình đoạn chắn mặt phẳng ( P):
Mặt phẳng (P) có vectơ pháp tuyến
+ Đường thẳng d có vecto chỉ phương
+ Đường thẳng Δ đi qua điểm M(-1 ; 2 ; 0) và có vectơ chỉ phương là :
Vậy phương trình của Δ là
Chọn A.
Ví dụ 8: Trong không gian với hệ trục tọa độ Oxyz; cho mặt phẳng (P) đi qua ba điểm A( 1; 2; 1); B( -2; 1; 0) và C( 0; 0; 1) . Đường thẳng d có phương trình : . Viết phương trình đường thẳng Δ đi qua M( 0; 0; -3) và song song với (P); vuông góc với đường thẳng d.
A.
B.
C.
D.
Lời giải:
+ Ta tìm vecto pháp tuyến của mặt phẳng ( P)
Ta có:
Mặt phẳng (P) có vectơ pháp tuyến
+ Đường thẳng d có vecto chỉ phương
+ Đường thẳng Δ đi qua điểm M( 0; 0; - 3) và có vectơ chỉ phương là :
Vậy phương trình của Δ là
Chọn B.
C. Bài tập vận dụng
Câu 1:
Trong không gian với hệ trục tọa độ Oxyz; cho mặt phẳng ( P): 2x- y+ 9= 0. Viết phương trình đường thẳng d đi qua M(2;1; 1) song song với mặt phẳng (P) và vuông góc với đường thẳng AB biết A( -1; 2; 0) và B( -2; 3; 1)?
A.
B.
C.
D. Đáp án khác
Lời giải:
+ Mặt phẳng (P) có vectơ pháp tuyến
+ Đường thẳng AB có vecto chỉ phương
+ Đường thẳng d đi qua điểm M( 2 ; 1 ; 1) và có vectơ chỉ phương là :
=> Phương trình chính tắc của đường thẳng d là
Chọn C.
Câu 2:
Viết phương trình đường thẳng d đi qua điểm M (-1; 1; -1), song song với mặt phẳng (Oxz) và vuông góc với đường thẳng d^':
A .
B.
C.
D. Đáp án khác
Lời giải:
+ Phương trình mặt phẳng (Oxz) là y= 0 vecto pháp tuyến của mặt phẳng này là:
+ Vecto chỉ phương của đường thẳng d’ là:
Do đường thẳng d song song với mặt phẳng (Oxz) và vuông góc với đường thẳng d’ nên một vecto chỉ phương của đường thẳng d là:
d đi qua điểm M ( -1; 1; -1)
Vậy phương trình đường thẳng d là
Chọn C.
Câu 3:
Trong không gian với hệ tọa độ Oxyz ; cho mặt phẳng (P) : 2x+ y+ 2z- 1= 0 và đường thẳng Δ: . Phương trình chính tắc đường thẳng d đi qua điểm B( 2 ; -1 ; 5) song song với (P) và vuông góc với Δ là
A.
B.
C.
D.
Lời giải:
Đường thẳng Δ có vectơ chỉ phương
Mặt phẳng (P) có vectơ pháp tuyến .
Gọi ud→ là vectơ chỉ phương của d.
Do đường thẳng d song song với mặt phẳng (P) và vuông góc với đường thẳng Δ nên một vecto chỉ phương của đường thẳng d là:
Vậy phương trình chính tắc của d là:
Chọn A
Câu 4:
Trong không gian với hệ tọa độ Oxyz; cho mặt phẳng (P): 2x+ 3y+ 1= 0. Phương trình đường thẳng d đi qua điểm A (2; 2; 2) song song với (P)và vuông góc với trục hoành là
A.
B.
C.
D.
Lời giải:
Trục hoành Ox có vectơ chỉ phương
Mặt phẳng (P) có vectơ pháp tuyến
Do đường thẳng d song song với mặt phẳng (P) và vuông góc với trục hoành nên một vecto chỉ phương của đường thẳng d là:
Đường thẳng d đi qua điểm A( 2;2;2) và có vectơ chỉ phương là
Vậy phương trình của d là:
Chọn D.
Câu 5:
Trong không gian với hệ tọa độ Oxyz; cho mặt cầu (S): (x+ 1)2 +(y-2)2 +z2 = 1. Phương trình đường thẳng d đi qua tâm của mặt cầu (S), song song với mặt phẳng (P): x+ 2z - 2= 0 và vuông góc với đường thẳng là.
A.
B.
C.
D.
Lời giải:
+ Tâm của mặt cầu ( S) là I( -1 ; 2 ; 0) .
+ Đường thẳng ∆ có vectơ chỉ phương .
+ Mặt phẳng ( P) có vectơ pháp tuyến
+ Đường thẳng d đi qua điểm I(-1 ; 2 ;0) và có vectơ chỉ phương là :
Vậy phương trình của d là
Chọn A.
Câu 6:
Trong không gian với hệ tọa độ Oxyz; cho mặt phẳng (P): x- 2y+ 2z- 5= 0; điểm A(2;1; 1); B( -1; 2; 3) . Mặt phẳng (Q) song song với mặt phẳng (P) và đi qua A. Viết phương trình đường thẳng d đi qua M(1;0; 0) đồng thời song song với (P) và vuông góc với đường thẳng OB?
A.
B.
C.
D. Đáp án khác
Lời giải:
+ Mặt phẳng (Q) qua A(2; 1;1) và song song với (P).
Khi đó (Q) có dạng: x- 2y+ 2z + D= 0
Thay tọa độ điểm A vào phương trình ( Q) ta đưọc: 2- 2.1 + 2.1+ D= 0 ⇔ D = - 2
Vậy phương trình ( Q): x- 2y +2z - 2= 0
Mặt phẳng ( Q) có vecto pháp tuyến
+ Đường thẳng OB có vecto chỉ phương là:
+ Đường thẳng d đi qua điểm M(1;0 ; 0) và có vectơ chỉ phương là :
Vậy phương trình của d là
Chọn C.
Câu 7:
Trong không gian với hệ trục tọa độ Oxyz; cho mặt phẳng (P) đi qua ba điểm A( 0;1; 0); B(-2; 0; 0) và C( 0; 0; 3); đường thẳng . Viết phương trình đường thẳng ∆ đi qua M (-1; -1; -1)song song với mặt phẳng (P) và vuông góc với đường thẳng d.
A.
B.
C.
D. Đáp án khác
Lời giải:
+ Phương trình đoạn chắn mặt phẳng ( P):
Mặt phẳng (P) có vectơ pháp tuyến
+ Đường thẳng d có vecto chỉ phương
+ Đường thẳng ∆ đi qua điểm M(-1 ; -1 ; -1) và có vectơ chỉ phương là :
Vậy phương trình của ∆ là
Chọn A.
Câu 8:
Trong không gian với hệ trục tọa độ Oxyz; cho mặt phẳng (P) đi qua ba điểm A( -1; 2; 0); B( 3;2; 1) và C( 0; 0; - 1) . Đường thẳng d có phương trình : . Viết phương trình đường thẳng ∆ đi qua M( 0; 1;1) và song song với (P); vuông góc với đường thẳng d.
A.
B.
C.
D.
Lời giải:
+ Ta tìm vecto pháp tuyến của mặt phẳng ( P)
Ta có:
Mặt phẳng (P) có vectơ pháp tuyến
+ Đường thẳng d có vecto chỉ phương
+ Đường thẳng ∆ đi qua điểm M( 0; 1 ;1) và có vectơ chỉ phương là :
Vậy phương trình của ∆ là
Chọn B.
Bài giảng: Cách viết phương trình đường thẳng nâng cao - Cô Nguyễn Phương Anh (Giáo viên VietJack)
Xem thêm các chuyên đề Toán lớp 12 có trong đề thi THPT Quốc gia khác:
- Viết phương trình đường thẳng nằm trong mặt phẳng, đi qua 1 điểm và vuông góc với đường thẳng
- Viết phương trình đường thẳng đi qua 1 điểm, cắt đường thẳng d và song song với mặt phẳng
- Viết phương trình đường thẳng đi qua 1 điểm và vuông góc với 2 đường thẳng
- Viết phương trình đường thẳng đi qua 1 điểm và cắt hai đường thẳng
- Viết phương trình đường thẳng đi qua 1 điểm, vuông góc với đường thẳng d1 và cắt đường thẳng d2
Sách VietJack thi THPT quốc gia 2025 cho học sinh 2k7:
- Giải Tiếng Anh 12 Global Success
- Giải sgk Tiếng Anh 12 Smart World
- Giải sgk Tiếng Anh 12 Friends Global
- Lớp 12 Kết nối tri thức
- Soạn văn 12 (hay nhất) - KNTT
- Soạn văn 12 (ngắn nhất) - KNTT
- Giải sgk Toán 12 - KNTT
- Giải sgk Vật Lí 12 - KNTT
- Giải sgk Hóa học 12 - KNTT
- Giải sgk Sinh học 12 - KNTT
- Giải sgk Lịch Sử 12 - KNTT
- Giải sgk Địa Lí 12 - KNTT
- Giải sgk Giáo dục KTPL 12 - KNTT
- Giải sgk Tin học 12 - KNTT
- Giải sgk Công nghệ 12 - KNTT
- Giải sgk Hoạt động trải nghiệm 12 - KNTT
- Giải sgk Giáo dục quốc phòng 12 - KNTT
- Giải sgk Âm nhạc 12 - KNTT
- Giải sgk Mĩ thuật 12 - KNTT
- Lớp 12 Chân trời sáng tạo
- Soạn văn 12 (hay nhất) - CTST
- Soạn văn 12 (ngắn nhất) - CTST
- Giải sgk Toán 12 - CTST
- Giải sgk Vật Lí 12 - CTST
- Giải sgk Hóa học 12 - CTST
- Giải sgk Sinh học 12 - CTST
- Giải sgk Lịch Sử 12 - CTST
- Giải sgk Địa Lí 12 - CTST
- Giải sgk Giáo dục KTPL 12 - CTST
- Giải sgk Tin học 12 - CTST
- Giải sgk Hoạt động trải nghiệm 12 - CTST
- Giải sgk Âm nhạc 12 - CTST
- Lớp 12 Cánh diều
- Soạn văn 12 Cánh diều (hay nhất)
- Soạn văn 12 Cánh diều (ngắn nhất)
- Giải sgk Toán 12 Cánh diều
- Giải sgk Vật Lí 12 - Cánh diều
- Giải sgk Hóa học 12 - Cánh diều
- Giải sgk Sinh học 12 - Cánh diều
- Giải sgk Lịch Sử 12 - Cánh diều
- Giải sgk Địa Lí 12 - Cánh diều
- Giải sgk Giáo dục KTPL 12 - Cánh diều
- Giải sgk Tin học 12 - Cánh diều
- Giải sgk Công nghệ 12 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 12 - Cánh diều
- Giải sgk Giáo dục quốc phòng 12 - Cánh diều
- Giải sgk Âm nhạc 12 - Cánh diều