Lý thuyết Một số hệ thức về cạnh và đường cao trong tam giác vuông lớp 9 (hay, chi tiết)
Bài viết Lý thuyết Một số hệ thức về cạnh và đường cao trong tam giác vuông lớp 9 hay, chi tiết giúp bạn nắm vững kiến thức trọng tâm Một số hệ thức về cạnh và đường cao trong tam giác vuông.
Lý thuyết Một số hệ thức về cạnh và đường cao trong tam giác vuông lớp 9 (hay, chi tiết)
Bài giảng: Bài 1: Một số hệ thức về cạnh và đường cao trong tam giác vuông - Cô Phạm Thị Huệ Chi (Giáo viên VietJack)
A. Lý thuyết
1. Hệ thức giữa cạnh góc vuông và hình chiếu của nó trên cạnh huyền
Trong tam giác vuông, bình phương mỗi cạnh góc vuông bằng tích của cạnh huyền và hình chiếu của cạnh góc vuông trên cạnh huyền.
Trong tam giác ABC vuông tại A ta có: b2 = a.b'; c2 = a.c'
2. Một số hệ thức liên quan đến đường cao
a) Định lý 1
Trong một tam giác vuông, bình phương đường cao ứng với cạnh huyền bằng tích hai hình chiếu của cạnh góc vuông trên cạnh huyền
Trong tam giác ABC vuông tại A ta có: h2 = b'.c'.
b) Định lý 2
Trong một tam giác vuông, tích của hai cạnh góc vuông bằng tích của cạnh huyền với đường cao tương ứng
Trong tam giác ABC vuông tại A ta có: a.h = b.c
c) Định lý 3
Trong tam giác vuông, nghịch đảo của bình phương đường cao ứng với cạnh huyền bằng tổng các nghịch đảo của bình phương hai cạnh góc vuông.
Trong tam giác ABC vuông tại A ta có:
3. Ví dụ cụ thể
Câu 1: Cho tam giác ABC vuông tại A, đường cao AH. Biết AB:AC = 3:4 và AB + AC = 21cm.
a) Tính các cạnh của tam giác ABC.
b) Tính độ dài các đoạn AH, BH, CH.
Lời giải:
a) Theo giả thiết: AB:AC = 3:4, suy ra
Do đó AB = 3.3 = 9 (cm); AC = 3.4 = 12 (cm).
Tam giác ABC vuông tại A, theo định lý Py – ta – go ta có:
BC2 = AB2 + AC2 = 92 + 122 = 225, suy ra BC = 15cm
b) Tam giác ABC vuông tại A, ta có AH.BC = AB.AC, suy ra
AH2 = BH.HC. Đặt BH = x (0 < x < 9) thì HC = 15 - x, ta có:
(7,2)2 = x(15 - x) ⇔ x2 - 15x + 51,84 = 0 ⇔ x(x - 5,4) = 9,6(x - 5,4) = 0 ⇔ (x - 5,4)(x - 9,6) = 0 ⇔ x = 5,4 hoặc x = 9,6 (loại)
Vậy BH = 5,4cm. Từ đó HC = BC - BH = 9,6 (cm).
Chú ý: Có thể tính BH như sau:
AB2 = BH.BC suy ra
B. Bài tập tự luận
Câu 1: Cho tam giác cân ABC có đáy BC = 2a , cạnh bên bằng b (b > a) .
a) Tính diện tích tam giác ABC
b) Dựng BK ⊥ AC . Tính tỷ số .
Lời giải:
a) Gọi H là trung điểm của BC:
Tam giác ABC cân tại A có AH là đường trung tuyến nên đồng thời là đường cao:
Theo định lý Pitago ta có:
Bài giảng: Bài 1: Một số hệ thức về cạnh và đường cao trong tam giác vuông - Cô Phạm Thị Huệ Chi (Giáo viên VietJack)
Xem thêm lý thuyết và các dạng bài tập Toán lớp 9 có lời giải hay khác:
- Lý thuyết Bài 2: Tỉ số lượng giác của góc nhọn (hay, chi tiết)
- Trắc nghiệm Bài 2 (có đáp án): Tỉ số lượng giác của góc nhọn
- Lý thuyết Bài 3: Một số hệ thức về cạnh và góc trong tam giác vuông (hay, chi tiết)
- Trắc nghiệm Bài 3 (có đáp án): Một số hệ thức về cạnh và góc trong tam giác vuông
- Lý thuyết Bài 4: Ứng dụng thực tế các tỉ số lượng giác của góc nhọn (hay, chi tiết)
- Trắc nghiệm Bài 4 (có đáp án): Ứng dụng thực tế các tỉ số lượng giác của góc nhọn
Tủ sách VIETJACK luyện thi vào 10 cho 2k10 (2025):
Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.
Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:Loạt bài Chuyên đề: Lý thuyết - Bài tập Toán lớp 9 Đại số và Hình học có đáp án có đầy đủ Lý thuyết và các dạng bài được biên soạn bám sát nội dung chương trình sgk Đại số 9 và Hình học 9.
Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.
- Giải Tiếng Anh 9 Global Success
- Giải sgk Tiếng Anh 9 Smart World
- Giải sgk Tiếng Anh 9 Friends plus
- Lớp 9 Kết nối tri thức
- Soạn văn 9 (hay nhất) - KNTT
- Soạn văn 9 (ngắn nhất) - KNTT
- Giải sgk Toán 9 - KNTT
- Giải sgk Khoa học tự nhiên 9 - KNTT
- Giải sgk Lịch Sử 9 - KNTT
- Giải sgk Địa Lí 9 - KNTT
- Giải sgk Giáo dục công dân 9 - KNTT
- Giải sgk Tin học 9 - KNTT
- Giải sgk Công nghệ 9 - KNTT
- Giải sgk Hoạt động trải nghiệm 9 - KNTT
- Giải sgk Âm nhạc 9 - KNTT
- Giải sgk Mĩ thuật 9 - KNTT
- Lớp 9 Chân trời sáng tạo
- Soạn văn 9 (hay nhất) - CTST
- Soạn văn 9 (ngắn nhất) - CTST
- Giải sgk Toán 9 - CTST
- Giải sgk Khoa học tự nhiên 9 - CTST
- Giải sgk Lịch Sử 9 - CTST
- Giải sgk Địa Lí 9 - CTST
- Giải sgk Giáo dục công dân 9 - CTST
- Giải sgk Tin học 9 - CTST
- Giải sgk Công nghệ 9 - CTST
- Giải sgk Hoạt động trải nghiệm 9 - CTST
- Giải sgk Âm nhạc 9 - CTST
- Giải sgk Mĩ thuật 9 - CTST
- Lớp 9 Cánh diều
- Soạn văn 9 Cánh diều (hay nhất)
- Soạn văn 9 Cánh diều (ngắn nhất)
- Giải sgk Toán 9 - Cánh diều
- Giải sgk Khoa học tự nhiên 9 - Cánh diều
- Giải sgk Lịch Sử 9 - Cánh diều
- Giải sgk Địa Lí 9 - Cánh diều
- Giải sgk Giáo dục công dân 9 - Cánh diều
- Giải sgk Tin học 9 - Cánh diều
- Giải sgk Công nghệ 9 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 9 - Cánh diều
- Giải sgk Âm nhạc 9 - Cánh diều
- Giải sgk Mĩ thuật 9 - Cánh diều