Lý thuyết Một số hệ thức về cạnh và đường cao trong tam giác vuông hay, chi tiết

Lý thuyết Một số hệ thức về cạnh và đường cao trong tam giác vuông hay, chi tiết

Bài giảng: Bài 1: Một số hệ thức về cạnh và đường cao trong tam giác vuông - Cô Phạm Thị Huệ Chi (Giáo viên VietJack)

Lý thuyết Một số hệ thức về cạnh và đường cao trong tam giác vuông - Lý thuyết Toán lớp 9 đầy đủ nhất

Quảng cáo

1. Hệ thức giữa cạnh góc vuông và hình chiếu của nó trên cạnh huyền

Trong tam giác vuông, bình phương mỗi cạnh góc vuông bằng tích của cạnh huyền và hình chiếu của cạnh góc vuông trên cạnh huyền.

Trong tam giác ABC vuông tại A ta có: b2 = a.b'; c2 = a.c'

2. Một số hệ thức liên quan đến đường cao

a) Định lý 1

    Trong một tam giác vuông, bình phương đường cao ứng với cạnh huyền bằng tích hai hình chiếu của cạnh góc vuông trên cạnh huyền

    Trong tam giác ABC vuông tại A ta có: h2 = b'.c'.

b) Định lý 2

    Trong một tam giác vuông, tích của hai cạnh góc vuông bằng tích của cạnh huyền với đường cao tương ứng

    Trong tam giác ABC vuông tại A ta có: a.h = b.c

c) Định lý 3

    Trong tam giác vuông, nghịch đảo của bình phương đường cao ứng với cạnh huyền bằng tổng các nghịch đảo của bình phương hai cạnh góc vuông.

    Trong tam giác ABC vuông tại A ta có:Lý thuyết Một số hệ thức về cạnh và đường cao trong tam giác vuông - Lý thuyết Toán lớp 9 đầy đủ nhất

3. Ví dụ cụ thể

Câu 1: Cho tam giác ABC vuông tại A, đường cao AH. Biết AB:AC = 3:4 và AB + AC = 21cm.

Quảng cáo

a) Tính các cạnh của tam giác ABC.

b) Tính độ dài các đoạn AH, BH, CH.

Hướng dẫn:

Lý thuyết Một số hệ thức về cạnh và đường cao trong tam giác vuông - Lý thuyết Toán lớp 9 đầy đủ nhất

a) Theo giả thiết: AB:AC = 3:4, suy ra

Lý thuyết Một số hệ thức về cạnh và đường cao trong tam giác vuông - Lý thuyết Toán lớp 9 đầy đủ nhất

Do đó AB = 3.3 = 9 (cm); AC = 3.4 = 12 (cm).

Tam giác ABC vuông tại A, theo định lý Py – ta – go ta có:

BC2 = AB2 + AC2 = 92 + 122 = 225, suy ra BC = 15cm

b) Tam giác ABC vuông tại A, ta có AH.BC = AB.AC, suy ra

Lý thuyết Một số hệ thức về cạnh và đường cao trong tam giác vuông - Lý thuyết Toán lớp 9 đầy đủ nhất

    AH2 = BH.HC. Đặt BH = x (0 < x < 9) thì HC = 15 - x, ta có:

    (7,2)2 = x(15 - x) ⇔ x2 - 15x + 51,84 = 0 ⇔ x(x - 5,4) = 9,6(x - 5,4) = 0 ⇔ (x - 5,4)(x - 9,6) = 0 ⇔ x = 5,4 hoặc x = 9,6 (loại)

Vậy BH = 5,4cm. Từ đó HC = BC - BH = 9,6 (cm).

Chú ý: Có thể tính BH như sau:

AB2 = BH.BC suy ra

Lý thuyết Một số hệ thức về cạnh và đường cao trong tam giác vuông - Lý thuyết Toán lớp 9 đầy đủ nhất

Quảng cáo
Cài đặt app vietjack

B. Bài tập tự luận

Câu 1: Cho tam giác cân ABC có đáy BC = 2a , cạnh bên bằng b (b > a) .

a) Tính diện tích tam giác ABC

b) Dựng BK ⊥ AC . Tính tỷ số Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án .

a) Gọi H là trung điểm của BC: Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Tam giác ABC cân tại A có AH là đường trung tuyến nên đồng thời là đường cao:

Theo định lý Pitago ta có:

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Bài giảng: Bài 1: Một số hệ thức về cạnh và đường cao trong tam giác vuông - Cô Phạm Thị Huệ Chi (Giáo viên VietJack)

Các bài Tổng hợp Lý thuyết và Bài tập Toán lớp 9 có đáp án và lời giải chi tiết khác:

Ngân hàng trắc nghiệm lớp 9 tại khoahoc.vietjack.com

GIẢM GIÁ 75% KHÓA HỌC VIETJACK HỖ TRỢ DỊCH COVID

Phụ huynh đăng ký mua khóa học lớp 9 cho con, được tặng miễn phí khóa ôn thi học kì. Cha mẹ hãy đăng ký học thử cho con và được tư vấn miễn phí. Đăng ký ngay!

Tổng đài hỗ trợ đăng ký khóa học: 084 283 45 85

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Nhóm học tập facebook miễn phí cho teen 2k6: fb.com/groups/hoctap2k6/

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Loạt bài Chuyên đề: Lý thuyết - Bài tập Toán lớp 9 Đại số và Hình học có đáp án có đầy đủ Lý thuyết và các dạng bài được biên soạn bám sát nội dung chương trình sgk Đại số 9 và Hình học 9.

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Nhóm hỏi bài 2k6