Lý thuyết Tỉ số lượng giác của góc nhọn lớp 9 (hay, chi tiết)

Bài viết Lý thuyết Tỉ số lượng giác của góc nhọn lớp 9 hay, chi tiết giúp bạn nắm vững kiến thức trọng tâm Tỉ số lượng giác của góc nhọn.

Lý thuyết Tỉ số lượng giác của góc nhọn lớp 9 (hay, chi tiết)

Bài giảng: Bài 2: Tỉ số lượng giác của góc nhọn - Cô Phạm Thị Huệ Chi (Giáo viên VietJack)

A. Lý thuyết

1. Định nghĩa

Quảng cáo

Lý thuyết Tỉ số lượng giác của góc nhọn - Lý thuyết Toán lớp 9 đầy đủ nhất

    + Tỉ số giữa cạnh đối và cạnh huyền được gọi là sin của góc α, kí hiệu là sinα.

    + Tỉ số giữa cạnh kề và cạnh huyền được gọi là côsin của góc α, kí hiệu là cosα.

    + Tỉ số giữa cạnh đối và cạnh kề được gọi là tang của góc α, kí hiệu là tanα.

    + Tỉ số giữa cạnh kề và cạnh đối được gọi là côtang của góc α, kí hiệu là cotα.

Hay sinα = AB/BC; cosα = AC/BC; tanα = AB/AC; cotα = AC/AB.

Nhận xét: Nếu α là một góc nhọn thì 0 < sinα < 1; 0 < cosα < 1; tanα > 0; cotα > 0

2. Tỉ số lượng giác của hai góc phụ nhau

Với hai góc α, β mà α + β = 90°,

Ta có: sinα = cosβ; cosα = sinβ; tanα = cotβ; cotα = tanβ.

Nếu hai góc nhọn α và β có sinα = sinβ hoặc cosα = cosβ thì α = β.

3. Một số góc đặc biệt

Với một số góc đặc biệt ta có:

Lý thuyết Tỉ số lượng giác của góc nhọn - Lý thuyết Toán lớp 9 đầy đủ nhất

4. Ví dụ cụ thể

Quảng cáo

Câu 1: Biết sinα = 5/13. Tính cosα, tanα và cotα.

Lời giải:

Lý thuyết Tỉ số lượng giác của góc nhọn - Lý thuyết Toán lớp 9 đầy đủ nhất

Xét ΔABC vuông tại A.

Lý thuyết Tỉ số lượng giác của góc nhọn - Lý thuyết Toán lớp 9 đầy đủ nhất

Câu 2: Biết sinα.cosα = 12/25. Tính sinα, cosα.

Lời giải:

Biết sinα.cosα = 12/25. Để tính sinα,cosα ta cần tính sinα + cosα rồi giải phương trình với ẩn là sinα hoặc cosα.

Ta có:

Lý thuyết Tỉ số lượng giác của góc nhọn - Lý thuyết Toán lớp 9 đầy đủ nhất

Lý thuyết Tỉ số lượng giác của góc nhọn - Lý thuyết Toán lớp 9 đầy đủ nhất

B. Bài tập tự luận

Câu 1: Cho tam giác nhọn ABC hai đường cao AD và BE cắt nhau tại H. Biết HD:HA = 1:2 . Chứng minh rằng tgB.tgC = 3 .

Quảng cáo

Lời giải:

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Câu 2: Cho tam giác ABC nhọn. Gọi a, b, c lần lượt là độ dài các cạnh đối diện với các đỉnh A, B, C. Chứng minh rằng: Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Lời giải:

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Quảng cáo

Xem thêm lý thuyết và các dạng bài tập Toán lớp 9 có lời giải hay khác:

ĐỀ THI, GIÁO ÁN, SÁCH ĐỀ THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 9

Bộ giáo án, bài giảng powerpoint, đề thi dành cho giáo viên và sách dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài hỗ trợ đăng ký : 084 283 45 85

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Loạt bài Chuyên đề: Lý thuyết - Bài tập Toán lớp 9 Đại số và Hình học có đáp án có đầy đủ Lý thuyết và các dạng bài được biên soạn bám sát nội dung chương trình sgk Đại số 9 và Hình học 9.

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 9 sách mới các môn học
Tài liệu giáo viên