Đồ thị hàm số y = ax2 (a ≠ 0): lý thuyết, các dạng bài tập có đáp án

Lý thuyết Đồ thị hàm số y = ax2 hay, chi tiết

1. Đồ thị hàm số y = ax2 (a ≠ 0)

Quảng cáo

Đồ thị của hàm số y = ax2 (a ≠ 0) là một đường cong đi qua gốc tọa độ và nhận trục Oy làm trục đối xứng. Đường cong đó được gọi là một parabol với đỉnh O.

    + Nếu a > 0 thì đồ thị nằm phía trên trục hoành, O là điểm thấp nhất của đồ thị.

    + Nếu a < 0 thì đồ thị nằm phía dưới trục hoành, O là điểm cao nhất cảu đồ thị.

2. Cách vẽ đồ thị hàm số y = ax2 (a ≠ 0)

Bước 1: Tìm tập xác định của hàm số.

Bước 2: Lập bảng giá trị (thường từ 5 đến 7 giá trị) tương ứng giữa x và y.

Bước 3: Vẽ đồ thị và kết luận.

* Chú ý: vì đồ thị hàm số y =ax2 (a ≠ 0) luôn đi qua gốc tọa độ O và nhận trục Oy làm trục đối xứng nên khi vẽ đồ thị của hàm số này , ta chỉ cần tìm một số điểm bên phải trục Oy rồi lấy các điểm đối xứng với chúng qua Oy.

3. Ví dụ cụ thể

Câu 1: Vẽ đồ thị hàm số y = x2.

Tập xác định: x ∈ R

Bảng giá trị tương ứng của x và y

Quảng cáo
x 0 1 -1 2 -2
y = x2 0 1 1 4 4

Trên mặt phẳng tọa độ, lấy các điểm O(0;0): A(1; 1); B (-1; 1); C(2; 4) và D( -2;4) rồi lần lượt nối chúng để được đường cong như hình dưới đây.

Đồ thị của hàm số y = x2:

Lý thuyết Đồ thị hàm số y = ax<sup>2</sup> (a ≠ 0) - Lý thuyết Toán lớp 9 đầy đủ nhất

Câu 2: Vẽ đồ thị hàm số y = -(1/2)x2

Tập xác định: x ∈ R

Bảng giá trị tương ứng của x và y

x 0 1 -1 2 -2
y = -(1/2)x2 0 -1/2 -1/2 -2 -2

Đồ thị

Lý thuyết Đồ thị hàm số y = ax<sup>2</sup> (a ≠ 0) - Lý thuyết Toán lớp 9 đầy đủ nhất

Trên mặt phẳng tọa độ lấy các điểm

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Nối các điểm đó ta được đường cong như hình vẽ dưới đây là đồ thị hàm số

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Quảng cáo

B. Bài tập tự luận

Câu 1: Cho hàm số y = ax2 . Tìm giá trị nhỏ nhất của y khi x đi từ -2017 đến 2018

Ta thấy rằng hệ số a của đồ thị này dương, nên đồ thị có giá trị nhỏ nhất là y = 0 tại x = 0

Nhận thấy rằng trong khoảng -2017 đến 2018 đi qua hoành độ x = 0

Do đó giá trị nhỏ nhất của hàm số y = ax2 là y(0) = 0

Vậy giá trị nhỏ nhất của y bằng 0 tại x = 0

Câu 2: Cho hàm số Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án . Tìm giá trị nhỏ nhất của y khi đi từ đến 2.

Hệ số a của đồ thị này là số âm nên đồ thị này có giá trị lớn nhất là

* Khi x đi từ -1 đến 0 thì hàm số đồng biến nên trên đoạn [-1; 0] , hàm số đạt giá trị nhỏ nhất tại x = -1 và Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

* Khi x đi từ 0 đến 2 thì hàm số nghịch biến nên hàm số đạt giá trị nhỏ nhất tại x = 2 trên đoạn

[ 0; 2] và y(2) = -1

* Suy ra, hàm số đạt giá trị nhỏ nhất tại x = 2 và Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Câu 3: Trong mặt phẳng tọa độ Oxy , cho Parabol (P): y = 2x2 . Vẽ đồ thị parabol (P)

Vẽ Parabol (P): y = 2x2

Bảng giá trị giữa x và y:

x -2 -1 0 1 2
y 8 2 0 2 8

Trên mặt phẳng tọa độ lấy các điểm A( - 2; 8); B(-1; 2) ; O(0; 0); C( 1;2) và D(2; 8).

Nối các điểm này ta được đường cong là đồ thị hàm số y = 2x2

Vẽ đúng đồ thị

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Các bài Tổng hợp Lý thuyết và Bài tập Toán lớp 9 có đáp án và lời giải chi tiết khác:

Giới thiệu kênh Youtube VietJack

Ngân hàng trắc nghiệm lớp 9 tại khoahoc.vietjack.com

CHỈ CÒN 250K 1 KHÓA HỌC BẤT KÌ, VIETJACK HỖ TRỢ DỊCH COVID

Phụ huynh đăng ký mua khóa học lớp 9 cho con, được tặng miễn phí khóa ôn thi học kì. Cha mẹ hãy đăng ký học thử cho con và được tư vấn miễn phí. Đăng ký ngay!

Tổng đài hỗ trợ đăng ký khóa học: 084 283 45 85

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Nhóm học tập facebook miễn phí cho teen 2k6: fb.com/groups/hoctap2k6/

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Loạt bài Chuyên đề: Lý thuyết - Bài tập Toán lớp 9 Đại số và Hình học có đáp án có đầy đủ Lý thuyết và các dạng bài được biên soạn bám sát nội dung chương trình sgk Đại số 9 và Hình học 9.

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Nhóm học tập 2k7