Phương trình đẳng cấp bậc 2, bậc 3 lượng giác - Toán lớp 11



Phương trình đẳng cấp bậc 2, bậc 3 lượng giác

A. Phương pháp giải & Ví dụ

Quảng cáo
Cài đặt app vietjack

Định nghĩa: Phương trình đẳng cấp đối với sinx và cosx là phương trình có dạng f(sinx, cosx) = 0 trong đó luỹ thừa của sinx và cosx cùng chẵn hoặc cùng lẻ.

Cách giải:

Xét cosx = 0 xem có là nghiệm của phương trình không?

Xét cosx ≠ 0. Chia hai vế phương trình cho coskx (k là số mũ cao nhất) ta được phương trình ẩn là tanx.

Giải và kết hợp nghiệm của cả hai trường hợp ta được nghiệm của phương trình đã cho.

Hoàn toàn tương tự ta có thể làm như trên đối với sinx.

Ví dụ minh họa

Bài 1: 3sin2x + 8sinx.cosx + (8√3-9) cos2x = 0 (1)

Xét cos⁡x = 0 ⇒ sin2x = 1. Ta có (1) ⇔ 3=0 (vô lý)

Xét cos⁡x≠0. Chia cả hai vế của pt cho cos2x. Ta được :

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Bài 2: sin3x + 2sinx.cos2x + 3cos3x = 0 (2)

Xét cos⁡x = 0. Ta có (2) ⇔ sin⁡x = 0 (vô lí do sin2x + cos2x = 1)

Xét cos⁡x ≠ 0. Chia cả hai vế của pt cho cos3x. Ta được :

(2) ⇔ tan3⁡x + 2 tan⁡x + 3 = 0

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

⇔ x = -π/4 + kπ (k ∈ Z)

Quảng cáo

B. Bài tập vận dụng

Bài 1: Giải phương trình sin2 x-(√3+1)sinxcosx+√3 cos2 x=0

Lời giải:

sin2⁡x - (√3+1) sin⁡x cos⁡x + √3 cos2⁡x = 0 (1)

Xét cos⁡x = 0. (1) sin2⁡x = 0 → vô lý

Xét cos⁡x≠0. Chia cả hai vế của pt cho cos2⁡x. Ta được :

(1) ⇔ tan2⁡x - (√3+1) tan⁡x + √3 = 0

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Bài 2: Giải phương trình: 2 cos2x – 3sinxcosx + sin2x = 0

Lời giải:

Xét cos⁡x = 0. Ta có . sin2⁡x = 0 → vô lý

Xét cos⁡x ≠ 0. Chia cả hai vế của pt cho cos2⁡x. Ta được :

2 - 3 tan⁡x + tan2⁡x = 0

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Quảng cáo
Cài đặt app vietjack

Bài 3: Giải phương trình: 3cos4x – 4cos2x sin2x + sin4x = 0

Lời giải:

Xét cos⁡x = 0: Ta có : sin4x = 0 (vô lý)

Xét cos⁡x ≠ 0. Chia cả hai vế của pt cho cos4x. Ta được :

3 - 4 tan2⁡x + tan4x = 0

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Bài 4: Tìm m để phương trình (m + 1)sin2x – sin2x + 2cos2x = 0 có nghiệm.

Lời giải:

Xét cos⁡x = 0. Ta có : (m+1)sin2⁡x = 0 ⇔ m = -1

Xét cos⁡x ≠ 0. Chia cả hai vế của pt cho cos2⁡x. Ta được :

(m+1)tan2⁡x - 2 tan⁡x + 2 = 0

Δ' = 1-2m-2 = -2m-1

Để pt có nghiệm ⇔ Δ' ≥ 0 ⇔ - 2m-1 ≥ 0 ⇔ m ≤ -1/2

Vậy với m ≤ -1/2 thì pt đã cho có nghiệm

Bài 5: Tìm điều kiện để phương trình a.sin2x + a.sinxcosx + b.cos2x = 0 với a ≠ 0 có nghiệm.

Lời giải:

Xét cos⁡x ≠ 0. Chia cả hai vế của pt cho cos2⁡x. Ta được :

a tan2⁡x + atan⁡x + b = 0

Δ = a2 - 4ab

Để pt có nghiệm ⇔ Δ' ≥ 0 ⇔a2 - 4ab ≥ 0 ⇔ a-4b ≥ 0 ⇔ a ≥ 4b

Xem thêm các dạng bài tập Toán lớp 11 có trong đề thi THPT Quốc gia khác:

Ngân hàng trắc nghiệm lớp 11 tại khoahoc.vietjack.com

KHÓA HỌC GIÚP TEEN 2004 ĐẠT 9-10 THI THPT QUỐC GIA

Đăng ký khóa học tốt 11 dành cho teen 2k4 tại khoahoc.vietjack.com

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Nhóm học tập facebook miễn phí cho teen 2k4: fb.com/groups/hoctap2k4/

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


phuong-trinh-luong-giac.jsp


Khóa học 11
2004 - Toán Lý Hóa